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Molecular dynamics

DIfFUSIon Of adatoms on a su rface (Courtesy of A. Voter, Los Alamos National Laboratory)



Molecular dynamics

Molecular dynamics
Molecular dynamics consists in simulating on the computer the
evolution of atomistic systems, as a numerical microscope:
e Understand the link bewteen macroscopic properties and
microscopic ingredients
e Explore matter at the atomistic scale
e Simulate new materials, new molecules

e Interpret experimental results

Applications: materials science, biology, chemistry

Molecular dynamics comes of age:
e 1/4 of CPU time worldwide is devoted to computations at the
molecular scale
e 2013 Chemistry Nobel prize: Arieh Warshel, Martin Karplus
and Michael Levitt. “Today the computer is just as important a
tool for chemists as the test tube. Simulations are so realistic that
they predict the outcome of traditional experiments.”



Molecular dynamics

Challenges

Main challenges:
e Improved models (force fields, coarse-grained force fields):
polarisability, water, chemical reactions

e Improved sampling methods (access long time scales):
thermodynamic quantities, and dynamical properties

e Incorporate data: Bayesian approaches, data sciences

Spatial parallelism is very ef-
fective, but temporal reach of
heroic brute force MD is limited
to 1us or less.

Number of atoms

fs ps ns us ms s ks
Timescale

Courtesy of Danny Perez (LANL)
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From Langevin to kinetic Monte Carlo

Ny u W
C.R. Schwantes, D. Shukla, V.S.Pande, Biophysical Journal, vol. 110, 2016



From Langevin to kMC

Two models for dynamics

The basic modeling ingredient in molecular dynamics: a potential
function V which associates to a configuration
X = (X1, ey XNy ) € R3Nawom an energy V(x) € R.

From V/, two kinds of dynamics are considered:

e Langevin and overdamped Langevin dynamics: Markov
processes with values in continuous state space ;

e kinetic Monte Carlo model or Markov state model (first order
kinetics): Markov processes with values in discrete state space
(jump Markov process).

Question: Can a mathematically rigorous link be made between
these two kinds of models ?
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Langevin and overdamped Langevin dynamics

Let us introduce the inverse temperature: 371 = kg T.
The Langevin dynamics write:
th - M—lPt dt,
dP; = —VV(Q:)dt — yM~ P, dt + \/2yB~1dW,.

We will also consider the overdamped Langevin dynamics

dQ; = —V\/(Qt) dt + +/ Qﬁ_lth.

In the following X = (Q:, P:) or X; = Q; denotes the associated
Markov process.

Main practical challenge: these dynamics are metastable.
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Metastability: energetic and entropic barriers
A two-dimensional schematic picture
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— o Slow convergence of trajectorial averages
e Transitions between metastable states are rare events
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Metastability: a toy example

Figure: Low energy conformations of the 7 atoms Lennard-Jones cluster.

—— simulation



From Langevin to kMC

The exit event

Let us consider a domain © C R defined in position space. The
associated state is S = O x R for the Langevin dynamics and
S = O for the overdamped Langevin dynamics. The exit event
from O is given by

(7—07 XTO)

where 7o = inf{t >0, Q: € O} = inf{t >0, X; & S}.
Objective: build a jump Markov model to simulate the exit event
(TO7XT(9)'

This is useful theoretically (justification of Markov state models and
Eyring-Kramers laws) and numerically (accelerated dynamics 4 /a
Voter).
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Kinetic Monte Carlo
Kinetic Monte Carlo (or Markov state) models are built as follows:
e define exit regions from O: 90 = Ulea(’)j
e associate a rate k; with an exit through 00,
and then (jump Markov model)

e the exit time T(I/()MC is exponentially distributed with parameter

J
Zj:l ki

o the exit region is [5VC with law P(I5VC = /) = —f p

j=1"%j
o (’f)MC and T(I/()MC are independent random variables

aOl Z1
7
1
4 & 80,
604 o 03
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Eyring-Kramers laws

Formulas for transition rates. Let us introduce the local minima
(zj)j=1,...s of V on 0O, and associated exit regions 0O;. The
parameters k; are computed using the Eyring-Kramers formula
(Harmonic Transition State Theory):

kj"’TST =y e BAlV(z)-V(x)]
where v} is an explicit prefactor and x; = argminp V.

22

00,

00, © O3
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A theoretical question

Question: can we relate the exit event (70, X,) for the original

dynamics with the exit event (75Y€, IXMC) for the jump Markov
process?
Two steps:

e Step 1: Introduce the Quasi-Stationary Distribution
(both for overdamped Langevin and Langevin)
— justify the use of a kMC model

e Step 2: Consider the small temperature regime 3 — oo

(only for the overdamped Langevin)
— justify the use of the Eyring-Kramers laws
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Step 1: The Quasi-Stationary Distribution
Definition of the QSD: A probability measure v with support S is a
QSD for the Markov process (X¢)¢>o iff for all t > 0,

Xo~v = L(X¢|To0 >t)=V

Existence, uniqueness, convergence: Assume O is bounded. For the
Langevin and the overdamped Langevin dynamics, there exists a
unique QSD v in 8. Moreover, for any Xg in S,

lim L(X¢|To > t) = .
t—o0

Remark: Quantitative definition of a metastable exit:
exit time>> local equilibration time
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Quasi-Stationary Distribution for Langevin

Difficulties: (i) O x RY unbounded and (ii) hypoelliptic and
non-reversible infinitesimal generator.

Ingredients of the proof: [TL Ramil, Reygner, 2021]

The QSD is the first eigenvector of the transition operator

f — E(f(Q¢, Pt)li<r,) (and the associated infinitesimal
generator) with absorbing boundary conditions

Probabilistic representation of the solution to the kinetic
Fokker-Planck equation on @ x R?, with Dirichlet boundary
condition on I'" = {(q, p) € 9O x R9,p- n(q) > 0}
Gaussian upper-bound on the transition density of the
absorbed process, using the parametrix method [Konakov, Menozzi,
Molchanov, 2010]

Compactness of the transition operator

Krein-Rutman theorem
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Step 1: The Quasi-Stationary Distribution
Fundamental property of the QSD. Assume X ~ v, then:
e the first exit time 7o is exponentially distributed since:
P(10 > s+ t) = P(t0 > s + t|to > s)P(10 > s)
=P"(r0 > t)P(10 > s)

e and 7o is independent of the first hitting point X, since:
P(X,, € A, 1o < t) =P"(X,, € A) —P"(X,, € AlTo > t)P"(10 > t)
=P"(X,, € A) —P"(X,, € A)P(10 > t)
=P"(X;, € A)P(10 < t)

Consequence: Starting from v, the exit event from O can be exactly
written as one jump of a kinetic Monte Carlo model with rates
PV(XTO S 60;)

E“(ro)

ki =
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Step 2: The small temperature regime

Let us consider the overdamped Langevin dynamics. One has
explicit formulas for E(70) and the distribution of X,,. Let us
introduce the first eigenstate (A1, uy) of the Fokker-Planck operator
associated with the dynamics with Dirichlet boundary conditions

on 00:

div (VVuy) + 87 Auy = =My on O,
up = 0 on 00.

Then, v = t(x)dx

Jou
E(r0) = ~
0) =3,
and [ Oy d
Opui1 ao
PY(X,., € 00;) = ——29 .
(Xro ) BAL [ u1(x) dx
Joo, Ontn do HTST
Thus, k; = : . Can we then show that k; ~ k; 7

T Bt f@ u1(x) dx
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Justifying Eyring-Kramers laws

Theorem [Di Gesu, TL, Le Peutrec, Nectoux, 2019]
For the overdamped Langevin dynamics and under some geometric
assumptions, starting from the QSD, the exit rates are

k’, — C,-OL e—ﬁ[V(Z,‘)—V(Xl)] (1 + O(IB_]_))
in the limit 8 — oo, where

/ \/2—
8 V det(V2V X1
\/det V2Vp0)(2)
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Assumptions (1/2)

O is an open bounded smooth domain in RY.

V : O — R is a Morse function with a single critical point x;.
Moreover, x; € O and V(x1) = ming V.

OpV >0 0n 00 and V|30 is a Morse function with local
minima reached at z1,...,z; with V(z1) < ... < V(z)).

V(Zl) — V(Xl) > V(Z_/) — V(Zl)
Vi e {1,...,J}, consider B, the basin of attraction of z; for
the dynamics x = —V 7 V/(x) and assume that

inf da(z,2) > V(z)) = V(z1)
ze ZC,.
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Assumptions (2/2)

Here, d, is the Agmon distance:

1

dfx.y) = inf [ g(a(e)l/ (1)

IV1V|in 00O
C! paths 7 : [0,1] — O such that v(0) = x and (1) = y.

VV]in O :
where g = {| | , and the infimum is over all piecewise

Numerical tests indicate that the assumption

Vie{l,...J}, ieanc da(z,z) > V(z;) — V(z1)

seems indeed necessay to get the expected results.
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Sketch of the proof (1/3)

The difficult part is to find an approximation for
fao,- Opuy = fao,- dpvie BV, where vi = v e?V.
We have

{L(O) vi =—M1vy on O,

vi = 0 on 00,

where L0 = B71A — VV . V is a self adjoint operator on
L?(e=BVY). We are interested in Vv; - n, and Vv; satisfies

L(I)Vvl =—-MAVv; on O,
V'rvl =0on 80,
(B~ div — VV-)Vv; =0 on 90O,
where
L) = IA - VV .V —Hess(V).

Therefore Vv; is an eigenvector (eigen-1-form) of —L(}) associated
with the small eigenvalue ;.
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Sketch of the proof (2/3)

Let N(P) = 1[0,5_3/2](—L(p)) be the spectral projection operator on
small eigenvalues. We know [Heifrer sisstrand] that, for 3 large,
dim(RanI'I(O)) =1 and dim(RanI'I(l)) = J:

RanMN©® = Span(v;)

Rann® = Span(i1, . ..,%y).
Since Vv; € Ranl(®),

J

Opvie™ PV = (Vv 1) 12(e-sv) /ao W - ne” V.

00; =t
The idea is now to build so-called quasi-modes which approximate
the eigenvectors of L(®) and L() associated with small eigenvalues
in the regime 8 — oo, in order to approximate the terms in the
sum.
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Sketch of the proof (3/3)
e Ranf(®: an approximation of v; is given by
V=Z"xo
where O' CcC O.
e RanM®: an approximation of RanM(®) is Span(l/jl, - ,1ZJ)

where (1;;)13,-9 are solutions to auxiliary eigenvalue problems,
attached to the local minima (zj)1<j<.

Two tools:

o Agmon estimates (the support of v); is essentially in a
neighborhood of z;):

IN >0, |74 2| vy = O(BY).
e WKB approximations:

AN > 0, ¢ == Z7 d(ePV/2e=Pdlz)/2) 6P,
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Generalizations and perspectives

If the state is metastable, the QSD is a good intermediate between
continuous-state space dynamics and jump Markov models.
We are working on generalizations:

e Broader geometric setting

e Langevin dynamics

e Non-reversible dynamics

The mathematical analysis gives the proper geometric setting under
which the kinetic Monte Carlo model can be built and the
Eyring-Kramers formulas can be used to parameterize it.
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From theory to algorithms

A.F. Voter, Annu. Rev. Mater. Res., vol. 32, 2002.



From theory to algorithms

How to sample efficiently the exit event?
If the process remains sufficiently long in a state, the exit event can
be modeled by one jump of a Markov state model. This can be
used to simulate efficiently the exit event: accelerated dynamics a
la A.F. Voter.
aOl Z1

22

4 &1 80,

00, o 3 O3
Two steps:
e Estimate the decorrelation time, namely the time to reach the
QSD
e Use the underlying jump Markov process to efficiently sample
the exit event
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Decorrelation time
How long should we wait in practice so that £L(X¢|7o > t) is close
to the QSD v7?

e Theoretically: exponential decay
[1L(X¢elro > t) = v]Tv < C(L(X0))exp (—(X2 — A1)t);

o Numerically: simulate £(X¢|7o > t) via an interacting particle
system (Fleming-Viot particle system), and test stationarity to
estimate the convergence time to the QSD (Gelman-Rubin
convergence diagnostic).

801 Z1

00, © O3
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The Fleming-Viot particle process
Start N processes i.i.d. from g, and iterate the following steps:
1. Integrate (in parallel) N realizations (k =1,..., N)
dXK = —VV(X5) dt + /26~ 1d Wk
until one of them, say X1, exits;
2. Kill the process that exits;
3. With uniform probability 1/(N — 1), randomly choose one of
the survivors, Xf, . ,X,’_LV, say X2
4. Branch Xf, with one copy persisting as X2 and the other
becoming the new X1.
It is known that the empirical distribution [vitemonais]

1 N
He, N = N;(Sx?

satisfies:
lim Mt N = E(Xt|t < TO).
N—oo
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Accelerated dyamics

Once the QSD has been reached, there are three ideas to efficiently
sample (10, X+,):

e use parallel architectures to accelerate the sampling: parallel
replica, parsplicing

e raise the minimum of the potential inside the state O (but not
on 00): hyperdynamics

e raise the temperature: temperature accelerated dynamics
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The Parallel Replica Algorithm
Perform many independent exit events in parallel [voter, 1008]

Two steps:
e Distribute N independent initial conditions in O according to
the QSD v ;
e Evolve N replicas from these initial conditions, consider the
first exiting replica, and multiply the first exit time by the
number of replicas.
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The Parallel Replica Algorithm

Why is it consistent?

e Exit time is independent of exit point so that

where Ip = arg min;(7});

e Exit times are i.i.d. exponentially distributed so that, for all N,
. L
Nmin(rd,...,780) = 75.
Remark: For this algorithm, one just needs two properties: ¢ is

exponentially distributed, and independent of the exit point X, .
The Eyring-Kramers formulas are not used.
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The generalized Parallel Replica algorithm

[Binder, Hédin, TL, Simpson]

1. Run a reference walker, using standard MD.

2. Each time the reference walker enters a state, start a
Fleming-Viot particle process (with N replicas simulated in
parallel) with initial condition the entering point.

3. If the reference walker exits before the Fleming Viot particle
process reaches stationarity go back to 1. Else go to the
parallel step.

4. Parallel step: Starting from the end points of the Fleming-Viot
particle process (approximately i.i.d. with law the QSD), run
independent MD and consider the first exit event. Multiply the
first exit time by N and go back to 1, using the first exit point
as initial condition.

The time at which the Fleming-Viot particle process becomes
stationary is determined using the Gelman-Rubin statistical test.
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The generalized Parallel Replica algorithm

e The algorithm does not require a partition of the state space
but only an ensemble of states.
e The time to reach the QSD is estimated each time the process

enters a new state (it depends on the state and on the initial
condition within the state).



From theory to algorithms

Numerical results

We recently tested the generalized Parallel Replica algorithm
applied to biological systems (postdoc Florent Hédin):

e Conformational equilibrium of the alanine dipeptide
e Dissociation of the FKBP-DMSO protein-ligand system

Main differences with materials science: definition of the states
using collective variables, the states do not define a partition, much
more rugged landscapes.

Current implementation within OpenMM, see
https://gitlab.inria.fr/parallel-replica



Molecular dynamics From Langevin to kMC From theory to algorithms Conclusion

Alanine dipeptide (1/5)

Definition of ParRep domains based on a free energy surface: we
study the transition time from C7¢4 (outside the red rectangle) to
C7ax (inside the red rectangle).
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Alanine dipeptide (2/5)

Conclusion
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Alanine dipeptide (3/5)

—— MD reference
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Convergence of the mean transition time.
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Alanine dipeptide (4/5)

From theory to algorithms

oy
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Alanine dipeptide (5/5)

tol | WT(s) | tsim(ns) | Speed(ns/day) | Eff. speedup | (Eff./Max)

0.01 6015 10008 143752 156 70%
0.025 | 5239 10103 166609 181 80%
0.05 4973 10032 174296 189 84%

Effective speed-up as a function of the tolerance, for N = 224

replicas run in parallel (speed of a reference Langevin dynamics is
921 ns/day).
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FKBP-DMSO (1/4)

Conclusion

FKBP-DMSO complex,
corresponding to the RCSB-PDB entry “1D7H".

m]

=
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From theory to algorithms

FKBP-DMSO (2/4)

Conclusion
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FKBP-DMSO (3/4)
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FKBP-DMSO (4/4)

TOL | WT(s) | tsim(ns) | Speed (ns/day) | Eff. speedup | (Eff./Max)

0.01 85142 | 403.5 409.4 79.5 56.8%
0.025 | 79574 | 457.6 496.8 96.5 68.9%
0.05 | 84455 | 482.2 493.4 95.8 68.4%

Effective speed-up as a function of the tolerance, for N = 140
replicas run in parallel (speed of a reference Langevin dynamics is
5.15 ns/day).
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The Parallel Trajectory Splicing algorithm

Pl’ecom pute the eXlt events [Perez, Cubuk, Waterland, Kaxiras, Voter, 2015]

Algorithm:
e Simulate in parallel short trajectories which start from the

QSD in a state, and end at the QSD in a state.
e Glue together these short trajectories to build the full
dynamics.

States
A
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Hyperdynamics (1/2)
Raise the potential in O to reduce the exit time [voter, 1007]

Two steps:
e Equilibrate on the biased potential V 4+ 0V ;
e Wait for an exit and multiply the exit time 7'(59‘/ by the boost
A\
factor B = T(%iv 0C exp(BIV(Xy))dt.
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Hyperdynamics (2/2)
Why is it consistent 7

Assumptions on 6V: (i) §V =0 on 9S and (i) 6V is sufficiently
small so that the Theorem above applies.

Recall the formula for the exit rates:
k’, — C,-OL e—ﬁ[V(Z,‘)—V(Xl)] (1 + O(IB_]_))
where COL = 2ﬁ(‘)n V(z) det(V2V)(x1)

1/det(V2Vi50)(zi)
One easily check that k;/ Zle ki is independent of 6V and

S k(v V) \/det(v2(v = V) soviea) (1 4+ 051

Sy ki(V) det(V2(V))(x1)
Joexp(=BV)

_ “1yy
" Toee(-a(v oyt T OCT =8
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Temperature Accelerated Dynamics (1/2)

Increase the temperature to reduce the exit time [Sorensen, Voter, 2000]

Algorithm:
e Observe the exit events from O at high temperature ;

e Extrapolate the high temperature exit events to low
temperature exit events.

00,

0 04 o 03
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Temperature Accelerated Dynamics (2/2)

Recall that, starting from the QSD, the exit event from a given
state O can exactly be modelled using a kinetic Monte Carlo model
with rates

ki = COL e AV@E=VEal (1 4+ 0(87Y))

oo _ |5 )y det(VEV)(a)
w:ere G =1/ 2:0nV(2i) det(V2V|90)(zi)
Thus,
kilo ,8’0 lo hi
o =\ 5 &P (37 = 8M)(V(z) = V()

Algorithm: observe exit events at high temperature, extrapolate the
rates to low temperature, stop when the extrapolated event will not
modify anymore the low temperature exit event.

Remark: TAD can be seen as a smart saddle point search method.
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Generalizations and perspectives

e The parallel replica is a very versatile algorithm: it applies e.g.
to non reversible dynamics, discrete-in-time dynamics,
continuous-time Markov Chain [aristoff, Plechac, wang]. |t does not
require estimates of the exit rates.

e Hyper and TAD are more efficient, but require the

temperature to be sufficiently small so that estimates of the
rates by the Eyring-Kramers formulas hold true.

All these techniques require “good” metastable states:
exit time > convergence time to the QSD.
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Conclusion

There are mathematical characterizations of good coarse-graining
representations (spectral gaps, convergence times vs exit times).

Could we use those characterizations together with advanced

learning techniques (auto-encoder, sparse methods) to get better
coarse-grained descriptions?

e Identify slow variables
e Sparse representation of the committor function

e Identify metastable states



Conclusion

References

Some papers | mentioned:

e G. Di Gesu, TL, D. Le Peutrec, and B. Nectoux, Sharp asymptotics
of the first exit point density, Annals of PDE, 5, 2019.

F. Hédin and TL, gen.parRep: a first implementation of the
Generalized Parallel Replica dynamics for the long time simulation
of metastable biochemical systems, Computer Physics
Communications, 239, 2019.

e C. Le Bris, TL, M. Luskin, and D. Perez, A mathematical
formalization of the parallel replica dynamics, Monte Carlo Methods
and Applications, 18(2), 2012.

e TL, M. Ramil, and J. Reygner, A probabilistic study of the kinetic
Fokker-Planck equation in cylindrical domains,
https://arxiv.org/abs/2010.10157

e TL, M. Ramil, and J. Reygner, Quasi-stationary distribution for the
Langevin process in cylindrical domains, part I: existence, uniqueness
and long-time convergence, https://arxiv.org/abs/2101.11999



Conclusion

References

Review papers:

e TL and Gabriel Stoltz, Partial differential equations and

stochastic methods in molecular dynamics. Acta Numerica,
25, 2016.

e TL, Mathematical foundations of Accelerated Molecular
Dynamics methods, In: W. Andreoni and S. Yip (eds)
Handbook of Materials Modeling, Springer, 2018.



	Molecular dynamics
	From Langevin to kMC
	From theory to algorithms

