
1

Quantum computation of
Green’s functions

Lin Lin

Department of Mathematics, UC Berkeley
Lawrence Berkeley National Laboratory

IMSI,

February, 2021

2

Joint work with

Yu Tong
(Berkeley)

Dong An
(Berkeley→ Maryland)

Nathan Wiebe
(Toronto)

Fast inversion, preconditioned quantum linear system solvers, fast Green’s function
computation, and fast evaluation of matrix functions, (Tong, An, Wiebe, L., 2008.13295)

3

A ritual
There is perhaps a widespread belief that a talk on quantum
computation should start with a picture of Feynman..

Figure. A superposition of
Feynmans

Solve nature with nature:
... if you want to make a simulation of nature, you’d better make
it quantum mechanical, and by golly it’s a wonderful problem, be-
cause it doesn’t look so easy.

– Richard P. Feynman (1981) 1st Conference on Physics and Com-
putation, MIT

4

Quantum computation meets the public’s attention
Google, Nature 2019
Random circuit sampling

USTC, Science 2020
Boson sampling

• After about four decades, quantum supremacy has been reached: the
point where quantum computers can do things that classical computers
cannot, regardless of whether those tasks are useful.

• Is controlling large-scale quantum systems merely really, really hard, or
is it ridiculously hard? – John Preskill (2012)

• Quantum computer does anything useful? called quantum advantage.

4

Quantum computation meets the public’s attention
Google, Nature 2019
Random circuit sampling

USTC, Science 2020
Boson sampling

• After about four decades, quantum supremacy has been reached: the
point where quantum computers can do things that classical computers
cannot, regardless of whether those tasks are useful.

• Is controlling large-scale quantum systems merely really, really hard, or
is it ridiculously hard? – John Preskill (2012)

• Quantum computer does anything useful? called quantum advantage.

4

Quantum computation meets the public’s attention
Google, Nature 2019
Random circuit sampling

USTC, Science 2020
Boson sampling

• After about four decades, quantum supremacy has been reached: the
point where quantum computers can do things that classical computers
cannot, regardless of whether those tasks are useful.

• Is controlling large-scale quantum systems merely really, really hard, or
is it ridiculously hard? – John Preskill (2012)

• Quantum computer does anything useful? called quantum advantage.

5

Quantum computer: current and (near, possible) future

We have a few
quantum
computers..

IBM’s road map (02/2021)

6

Quantum numerical linear algebra

• Solving linear systems, eigenvalue problems, matrix
exponentials, least square problems, singular value
decompositions etc on a quantum computer.
• Many interesting, exciting progresses in the past few years.
• Reasonable way towards “quantum advantage”.
• Related to “Quantum machine learning”.
• Solving linear equations

Ax = b

• Quantum linear system problem (QLSP)

A |x〉 ∝ |b〉

• A ∈ CN×N : cost can be O(polylog(N)).

6

Quantum numerical linear algebra

• Solving linear systems, eigenvalue problems, matrix
exponentials, least square problems, singular value
decompositions etc on a quantum computer.
• Many interesting, exciting progresses in the past few years.
• Reasonable way towards “quantum advantage”.
• Related to “Quantum machine learning”.
• Solving linear equations

Ax = b

• Quantum linear system problem (QLSP)

A |x〉 ∝ |b〉

• A ∈ CN×N : cost can be O(polylog(N)).

6

Quantum numerical linear algebra

• Solving linear systems, eigenvalue problems, matrix
exponentials, least square problems, singular value
decompositions etc on a quantum computer.
• Many interesting, exciting progresses in the past few years.
• Reasonable way towards “quantum advantage”.
• Related to “Quantum machine learning”.
• Solving linear equations

Ax = b

• Quantum linear system problem (QLSP)

A |x〉 ∝ |b〉

• A ∈ CN×N : cost can be O(polylog(N)).

6

Quantum numerical linear algebra

• Solving linear systems, eigenvalue problems, matrix
exponentials, least square problems, singular value
decompositions etc on a quantum computer.
• Many interesting, exciting progresses in the past few years.
• Reasonable way towards “quantum advantage”.
• Related to “Quantum machine learning”.
• Solving linear equations

Ax = b

• Quantum linear system problem (QLSP)

A |x〉 ∝ |b〉

• A ∈ CN×N : cost can be O(polylog(N)).

6

Quantum numerical linear algebra

• Solving linear systems, eigenvalue problems, matrix
exponentials, least square problems, singular value
decompositions etc on a quantum computer.
• Many interesting, exciting progresses in the past few years.
• Reasonable way towards “quantum advantage”.
• Related to “Quantum machine learning”.
• Solving linear equations

Ax = b

• Quantum linear system problem (QLSP)

A |x〉 ∝ |b〉

• A ∈ CN×N : cost can be O(polylog(N)).

6

Quantum numerical linear algebra

• Solving linear systems, eigenvalue problems, matrix
exponentials, least square problems, singular value
decompositions etc on a quantum computer.
• Many interesting, exciting progresses in the past few years.
• Reasonable way towards “quantum advantage”.
• Related to “Quantum machine learning”.
• Solving linear equations

Ax = b

• Quantum linear system problem (QLSP)

A |x〉 ∝ |b〉

• A ∈ CN×N : cost can be O(polylog(N)).

6

Quantum numerical linear algebra

• Solving linear systems, eigenvalue problems, matrix
exponentials, least square problems, singular value
decompositions etc on a quantum computer.
• Many interesting, exciting progresses in the past few years.
• Reasonable way towards “quantum advantage”.
• Related to “Quantum machine learning”.
• Solving linear equations

Ax = b

• Quantum linear system problem (QLSP)

A |x〉 ∝ |b〉

• A ∈ CN×N : cost can be O(polylog(N)).

7

Compare the complexities of QLSP solvers
Significant progress in the past few years: Near-optimal complexity
matching lower bounds.

Algorithm Query complexity Remark
HHL,(Harrow-Hassidim-Lloyd,
2009)

Õ(κ2/ε) w. VTAA, complexity becomes
Õ(κ/ε3) (Ambainis 2010)

Linear combination of unitaries
(LCU),(Childs-Kothari-Somma,
2017)

Õ(κ2polylog(1/ε)) w. VTAA, complexity becomes
Õ(κ poly log(1/ε))

Quantum singular value transfor-
mation (QSVT) (Gilyén-Su-Low-
Wiebe, 2019)

Õ(κ2 log(1/ε)) Queries the RHS only Õ(κ) times

Randomization method (RM)
(Subasi-Somma-Orsucci, 2019)

Õ(κ/ε) Prepares a mixed state; w. re-
peated phase estimation, complex-
ity becomes Õ(κ poly log(1/ε))

Time-optimal adiabatic quantum
computing (AQC(exp)) (An-L.,
2019, 1909.05500)

Õ(κ poly log(1/ε)) No need for any amplitude amplifi-
cation. Use time-dependent Hamil-
tonian simulation.

Eigenstate filtering (L.-Tong,
1910.14596, Quantum 2020)

Õ(κ log(1/ε)) No need for any amplitude amplifi-
cation. Does not rely on any com-
plex subroutines.

8

Electron excitation

9

Quasi-particle and quasi-horse

10

Chemistry and materials

11

Spectroscopic information and Green’s function

Spectral function, 2D Hubbard model.
A(k, ω) = − 1

π
Im(G(k, ω))

DMFT calculation: [Mejuto-Zaera,
Zepeda-Nunez, Lindsey, Tubman,

Whaley, L., 2020]

• Lehmann representation of the single-particle Green’s function

G(z) =
∑

n

fnf †n
z − εn + iη sgn(εn − µ)

, η = 0+.

εn: quasi-particle energy; fn: quasi-particle wavefunction

• Poles: ionization potential, electron affinity.

• Many experiments: photoemission spectroscopy; inverse
photoemission spectroscopy; ARPES...

11

Spectroscopic information and Green’s function

Spectral function, 2D Hubbard model.
A(k, ω) = − 1

π
Im(G(k, ω))

DMFT calculation: [Mejuto-Zaera,
Zepeda-Nunez, Lindsey, Tubman,

Whaley, L., 2020]

• Lehmann representation of the single-particle Green’s function

G(z) =
∑

n

fnf †n
z − εn + iη sgn(εn − µ)

, η = 0+.

εn: quasi-particle energy; fn: quasi-particle wavefunction

• Poles: ionization potential, electron affinity.

• Many experiments: photoemission spectroscopy; inverse
photoemission spectroscopy; ARPES...

11

Spectroscopic information and Green’s function

Spectral function, 2D Hubbard model.
A(k, ω) = − 1

π
Im(G(k, ω))

DMFT calculation: [Mejuto-Zaera,
Zepeda-Nunez, Lindsey, Tubman,

Whaley, L., 2020]

• Lehmann representation of the single-particle Green’s function

G(z) =
∑

n

fnf †n
z − εn + iη sgn(εn − µ)

, η = 0+.

εn: quasi-particle energy; fn: quasi-particle wavefunction

• Poles: ionization potential, electron affinity.

• Many experiments: photoemission spectroscopy; inverse
photoemission spectroscopy; ARPES...

12

Quantum many-body problem

• N sites (spin-orbitals)

• âi , â
†
i , n̂i : annihilation, creation, number operator at site i .

• Many-body Hamiltonian (dimension: 2N)

Ĥ = Ĥ0︸︷︷︸
non-interacting

+ Ĥ1︸︷︷︸
interacting

Ĥ0 =
N∑

ij=1

Tij â
†
i âj , Ĥ1 =

N∑
ijkl=1

Vijkl â
†
i â
†
j âl âk .

• |Ψ0〉: ground state with Ne electrons (Ne ≤ 2N)
E0: ground state energy.

12

Quantum many-body problem

• N sites (spin-orbitals)

• âi , â
†
i , n̂i : annihilation, creation, number operator at site i .

• Many-body Hamiltonian (dimension: 2N)

Ĥ = Ĥ0︸︷︷︸
non-interacting

+ Ĥ1︸︷︷︸
interacting

Ĥ0 =
N∑

ij=1

Tij â
†
i âj , Ĥ1 =

N∑
ijkl=1

Vijkl â
†
i â
†
j âl âk .

• |Ψ0〉: ground state with Ne electrons (Ne ≤ 2N)
E0: ground state energy.

12

Quantum many-body problem

• N sites (spin-orbitals)

• âi , â
†
i , n̂i : annihilation, creation, number operator at site i .

• Many-body Hamiltonian (dimension: 2N)

Ĥ = Ĥ0︸︷︷︸
non-interacting

+ Ĥ1︸︷︷︸
interacting

Ĥ0 =
N∑

ij=1

Tij â
†
i âj , Ĥ1 =

N∑
ijkl=1

Vijkl â
†
i â
†
j âl âk .

• |Ψ0〉: ground state with Ne electrons (Ne ≤ 2N)
E0: ground state energy.

12

Quantum many-body problem

• N sites (spin-orbitals)

• âi , â
†
i , n̂i : annihilation, creation, number operator at site i .

• Many-body Hamiltonian (dimension: 2N)

Ĥ = Ĥ0︸︷︷︸
non-interacting

+ Ĥ1︸︷︷︸
interacting

Ĥ0 =
N∑

ij=1

Tij â
†
i âj , Ĥ1 =

N∑
ijkl=1

Vijkl â
†
i â
†
j âl âk .

• |Ψ0〉: ground state with Ne electrons (Ne ≤ 2N)
E0: ground state energy.

13

Green’s function

• Time-ordered single-particle Green’s function (or Green’s
function for short) in the frequency domain: map C→ CN×N

G(z) = G(+)(z) + G(−)(z).

• Advanced (G(+)) and retarded (G(−)) Green’s functions

G(+)
ij (z) :=

〈
Ψ0

∣∣∣∣âi

(
z −

[
Ĥ − E0

])−1
â†j

∣∣∣∣Ψ0

〉

G(−)
ij (z) :=

〈
Ψ0

∣∣∣∣â†j (z +
[
Ĥ − E0

])−1
âi

∣∣∣∣Ψ0

〉
.

• Assume | Im(z)| ≥ η > 0 (broadening parameter)

13

Green’s function

• Time-ordered single-particle Green’s function (or Green’s
function for short) in the frequency domain: map C→ CN×N

G(z) = G(+)(z) + G(−)(z).

• Advanced (G(+)) and retarded (G(−)) Green’s functions

G(+)
ij (z) :=

〈
Ψ0

∣∣∣∣âi

(
z −

[
Ĥ − E0

])−1
â†j

∣∣∣∣Ψ0

〉

G(−)
ij (z) :=

〈
Ψ0

∣∣∣∣â†j (z +
[
Ĥ − E0

])−1
âi

∣∣∣∣Ψ0

〉
.

• Assume | Im(z)| ≥ η > 0 (broadening parameter)

13

Green’s function

• Time-ordered single-particle Green’s function (or Green’s
function for short) in the frequency domain: map C→ CN×N

G(z) = G(+)(z) + G(−)(z).

• Advanced (G(+)) and retarded (G(−)) Green’s functions

G(+)
ij (z) :=

〈
Ψ0

∣∣∣∣âi

(
z −

[
Ĥ − E0

])−1
â†j

∣∣∣∣Ψ0

〉

G(−)
ij (z) :=

〈
Ψ0

∣∣∣∣â†j (z +
[
Ĥ − E0

])−1
âi

∣∣∣∣Ψ0

〉
.

• Assume | Im(z)| ≥ η > 0 (broadening parameter)

14

Simplest setting: non-interacting system

• Ĥ = Ĥ0 =
∑N

ij=1 Tij â
†
i âj .

• Very simple analytic solution via a (small) matrix inversion

G0(z) = (z − T)−1 =
∑

n

fnf †n
z − εn

, Tfn = εnfn.

• Bare Green’s function (bare horse)

• With interaction Ĥ = Ĥ0 + Ĥ1. G(z): quasi-horse

• Self energy
Σ(z) := G−1(z)−G−1

0 (z).

14

Simplest setting: non-interacting system

• Ĥ = Ĥ0 =
∑N

ij=1 Tij â
†
i âj .

• Very simple analytic solution via a (small) matrix inversion

G0(z) = (z − T)−1 =
∑

n

fnf †n
z − εn

, Tfn = εnfn.

• Bare Green’s function (bare horse)

• With interaction Ĥ = Ĥ0 + Ĥ1. G(z): quasi-horse

• Self energy
Σ(z) := G−1(z)−G−1

0 (z).

14

Simplest setting: non-interacting system

• Ĥ = Ĥ0 =
∑N

ij=1 Tij â
†
i âj .

• Very simple analytic solution via a (small) matrix inversion

G0(z) = (z − T)−1 =
∑

n

fnf †n
z − εn

, Tfn = εnfn.

• Bare Green’s function (bare horse)

• With interaction Ĥ = Ĥ0 + Ĥ1. G(z): quasi-horse

• Self energy
Σ(z) := G−1(z)−G−1

0 (z).

14

Simplest setting: non-interacting system

• Ĥ = Ĥ0 =
∑N

ij=1 Tij â
†
i âj .

• Very simple analytic solution via a (small) matrix inversion

G0(z) = (z − T)−1 =
∑

n

fnf †n
z − εn

, Tfn = εnfn.

• Bare Green’s function (bare horse)

• With interaction Ĥ = Ĥ0 + Ĥ1. G(z): quasi-horse

• Self energy
Σ(z) := G−1(z)−G−1

0 (z).

14

Simplest setting: non-interacting system

• Ĥ = Ĥ0 =
∑N

ij=1 Tij â
†
i âj .

• Very simple analytic solution via a (small) matrix inversion

G0(z) = (z − T)−1 =
∑

n

fnf †n
z − εn

, Tfn = εnfn.

• Bare Green’s function (bare horse)

• With interaction Ĥ = Ĥ0 + Ĥ1. G(z): quasi-horse

• Self energy
Σ(z) := G−1(z)−G−1

0 (z).

15

Next simplest setting: quantum impurity
Example: Single-impurity Anderson model
(SIAM)

Ĥ =
∑
σ

εf f̂
†
σ f̂σ +

∑
〈j,j′〉σ

tjj′ ĉ
†
jσ ĉj′σ +

∑
j,σ

(
Vj f̂ †σ ĉjσ + V∗j ĉ†jσ f̂σ

)
︸ ︷︷ ︸

Ĥ0

+ Uf̂ †↑ f̂↑ f̂
†
↓ f̂↓︸ ︷︷ ︸

Ĥ1

• Perturbation to the Green’s function is global.

• Self energy Σ(z) is only nonzero on the impurity.

• Foundation of DMFT / CT-QMC etc. “Folk
theorem” at least since Feynman (with
diagrammatic arguments)

• Non-perturbative proof (for general impurities):
[L.-Lindsey, Ann. Henri Poincare 2020]

15

Next simplest setting: quantum impurity
Example: Single-impurity Anderson model
(SIAM)

Ĥ =
∑
σ

εf f̂
†
σ f̂σ +

∑
〈j,j′〉σ

tjj′ ĉ
†
jσ ĉj′σ +

∑
j,σ

(
Vj f̂ †σ ĉjσ + V∗j ĉ†jσ f̂σ

)
︸ ︷︷ ︸

Ĥ0

+ Uf̂ †↑ f̂↑ f̂
†
↓ f̂↓︸ ︷︷ ︸

Ĥ1

• Perturbation to the Green’s function is global.

• Self energy Σ(z) is only nonzero on the impurity.

• Foundation of DMFT / CT-QMC etc. “Folk
theorem” at least since Feynman (with
diagrammatic arguments)

• Non-perturbative proof (for general impurities):
[L.-Lindsey, Ann. Henri Poincare 2020]

15

Next simplest setting: quantum impurity
Example: Single-impurity Anderson model
(SIAM)

Ĥ =
∑
σ

εf f̂
†
σ f̂σ +

∑
〈j,j′〉σ

tjj′ ĉ
†
jσ ĉj′σ +

∑
j,σ

(
Vj f̂ †σ ĉjσ + V∗j ĉ†jσ f̂σ

)
︸ ︷︷ ︸

Ĥ0

+ Uf̂ †↑ f̂↑ f̂
†
↓ f̂↓︸ ︷︷ ︸

Ĥ1

• Perturbation to the Green’s function is global.

• Self energy Σ(z) is only nonzero on the impurity.

• Foundation of DMFT / CT-QMC etc. “Folk
theorem” at least since Feynman (with
diagrammatic arguments)

• Non-perturbative proof (for general impurities):
[L.-Lindsey, Ann. Henri Poincare 2020]

15

Next simplest setting: quantum impurity
Example: Single-impurity Anderson model
(SIAM)

Ĥ =
∑
σ

εf f̂
†
σ f̂σ +

∑
〈j,j′〉σ

tjj′ ĉ
†
jσ ĉj′σ +

∑
j,σ

(
Vj f̂ †σ ĉjσ + V∗j ĉ†jσ f̂σ

)
︸ ︷︷ ︸

Ĥ0

+ Uf̂ †↑ f̂↑ f̂
†
↓ f̂↓︸ ︷︷ ︸

Ĥ1

• Perturbation to the Green’s function is global.

• Self energy Σ(z) is only nonzero on the impurity.

• Foundation of DMFT / CT-QMC etc. “Folk
theorem” at least since Feynman (with
diagrammatic arguments)

• Non-perturbative proof (for general impurities):
[L.-Lindsey, Ann. Henri Poincare 2020]

15

Next simplest setting: quantum impurity
Example: Single-impurity Anderson model
(SIAM)

Ĥ =
∑
σ

εf f̂
†
σ f̂σ +

∑
〈j,j′〉σ

tjj′ ĉ
†
jσ ĉj′σ +

∑
j,σ

(
Vj f̂ †σ ĉjσ + V∗j ĉ†jσ f̂σ

)
︸ ︷︷ ︸

Ĥ0

+ Uf̂ †↑ f̂↑ f̂
†
↓ f̂↓︸ ︷︷ ︸

Ĥ1

• Perturbation to the Green’s function is global.

• Self energy Σ(z) is only nonzero on the impurity.

• Foundation of DMFT / CT-QMC etc. “Folk
theorem” at least since Feynman (with
diagrammatic arguments)

• Non-perturbative proof (for general impurities):
[L.-Lindsey, Ann. Henri Poincare 2020]

16

Computing Green’s functions (with general interaction)

• With HF/DFT: essentially a non-interacting picture

• Small Ĥ1: many-body perturbation theory (MBPT). GF2, GW,
SOSEX, GFCC..

• Large Ĥ1: exact diagonalization / CI, QMC, DMRG..

• Quantum computer

16

Computing Green’s functions (with general interaction)

• With HF/DFT: essentially a non-interacting picture

• Small Ĥ1: many-body perturbation theory (MBPT). GF2, GW,
SOSEX, GFCC..

• Large Ĥ1: exact diagonalization / CI, QMC, DMRG..

• Quantum computer

16

Computing Green’s functions (with general interaction)

• With HF/DFT: essentially a non-interacting picture

• Small Ĥ1: many-body perturbation theory (MBPT). GF2, GW,
SOSEX, GFCC..

• Large Ĥ1: exact diagonalization / CI, QMC, DMRG..

• Quantum computer

16

Computing Green’s functions (with general interaction)

• With HF/DFT: essentially a non-interacting picture

• Small Ĥ1: many-body perturbation theory (MBPT). GF2, GW,
SOSEX, GFCC..

• Large Ĥ1: exact diagonalization / CI, QMC, DMRG..

• Quantum computer

17

Direct computation of G: strategy 1

• Focus on G(+) (G(−) is similar)

G(+)
ij (z) :=

〈
Ψ0

∣∣∣∣âi

(
z −

[
Ĥ − E0

])−1
â†j

∣∣∣∣Ψ0

〉
• |Φj〉 := â†j |Ψ0〉: (sparse) matrix-vector multiplication.

• |ζj〉 :=
(

z −
[
Ĥ − E0

])−1
|Φj〉: solve a big linear system. Most

challenging

• G(+)
ij (z) = 〈Φi |ζj〉: inner product.

• Seems to be a lucid approach.

17

Direct computation of G: strategy 1

• Focus on G(+) (G(−) is similar)

G(+)
ij (z) :=

〈
Ψ0

∣∣∣∣âi

(
z −

[
Ĥ − E0

])−1
â†j

∣∣∣∣Ψ0

〉
• |Φj〉 := â†j |Ψ0〉: (sparse) matrix-vector multiplication.

• |ζj〉 :=
(

z −
[
Ĥ − E0

])−1
|Φj〉: solve a big linear system. Most

challenging

• G(+)
ij (z) = 〈Φi |ζj〉: inner product.

• Seems to be a lucid approach.

17

Direct computation of G: strategy 1

• Focus on G(+) (G(−) is similar)

G(+)
ij (z) :=

〈
Ψ0

∣∣∣∣âi

(
z −

[
Ĥ − E0

])−1
â†j

∣∣∣∣Ψ0

〉
• |Φj〉 := â†j |Ψ0〉: (sparse) matrix-vector multiplication.

• |ζj〉 :=
(

z −
[
Ĥ − E0

])−1
|Φj〉: solve a big linear system. Most

challenging

• G(+)
ij (z) = 〈Φi |ζj〉: inner product.

• Seems to be a lucid approach.

17

Direct computation of G: strategy 1

• Focus on G(+) (G(−) is similar)

G(+)
ij (z) :=

〈
Ψ0

∣∣∣∣âi

(
z −

[
Ĥ − E0

])−1
â†j

∣∣∣∣Ψ0

〉
• |Φj〉 := â†j |Ψ0〉: (sparse) matrix-vector multiplication.

• |ζj〉 :=
(

z −
[
Ĥ − E0

])−1
|Φj〉: solve a big linear system. Most

challenging

• G(+)
ij (z) = 〈Φi |ζj〉: inner product.

• Seems to be a lucid approach.

17

Direct computation of G: strategy 1

• Focus on G(+) (G(−) is similar)

G(+)
ij (z) :=

〈
Ψ0

∣∣∣∣âi

(
z −

[
Ĥ − E0

])−1
â†j

∣∣∣∣Ψ0

〉
• |Φj〉 := â†j |Ψ0〉: (sparse) matrix-vector multiplication.

• |ζj〉 :=
(

z −
[
Ĥ − E0

])−1
|Φj〉: solve a big linear system. Most

challenging

• G(+)
ij (z) = 〈Φi |ζj〉: inner product.

• Seems to be a lucid approach.

18

Direct computation of G: strategy 2

• Rewrite

G(+)
ij (z) :=

〈
Ψ0

∣∣∣∣âi

(
z −

[
Ĥ − E0

])−1
â†j

∣∣∣∣Ψ0

〉
:= 〈Ψ0|A|Ψ0〉

• Perform “matrix-multiplication”

A = âi

(
z −

[
Ĥ − E0

])−1
â†j

• Sounds worse / crazier, but this is what we are going to do.

18

Direct computation of G: strategy 2

• Rewrite

G(+)
ij (z) :=

〈
Ψ0

∣∣∣∣âi

(
z −

[
Ĥ − E0

])−1
â†j

∣∣∣∣Ψ0

〉
:= 〈Ψ0|A|Ψ0〉

• Perform “matrix-multiplication”

A = âi

(
z −

[
Ĥ − E0

])−1
â†j

• Sounds worse / crazier, but this is what we are going to do.

18

Direct computation of G: strategy 2

• Rewrite

G(+)
ij (z) :=

〈
Ψ0

∣∣∣∣âi

(
z −

[
Ĥ − E0

])−1
â†j

∣∣∣∣Ψ0

〉
:= 〈Ψ0|A|Ψ0〉

• Perform “matrix-multiplication”

A = âi

(
z −

[
Ĥ − E0

])−1
â†j

• Sounds worse / crazier, but this is what we are going to do.

19

Block-encoding

• Quantum gates have to be unitary.

• A = âi

(
z −

[
Ĥ − E0

])−1
â†j is not unitary.

• Idea: extend n-qubit non-unitary matrix to a (n + m)-qubit unitary
matrix (Low-Chuang, 2016; called “standard form” initially)

UA =

(
A/α ·
· ·

)

19

Block-encoding

• Quantum gates have to be unitary.

• A = âi

(
z −

[
Ĥ − E0

])−1
â†j is not unitary.

• Idea: extend n-qubit non-unitary matrix to a (n + m)-qubit unitary
matrix (Low-Chuang, 2016; called “standard form” initially)

UA =

(
A/α ·
· ·

)

19

Block-encoding

• Quantum gates have to be unitary.

• A = âi

(
z −

[
Ĥ − E0

])−1
â†j is not unitary.

• Idea: extend n-qubit non-unitary matrix to a (n + m)-qubit unitary
matrix (Low-Chuang, 2016; called “standard form” initially)

UA =

(
A/α ·
· ·

)

20

Block-encoding

Definition
Given an n-qubit matrix A, if we can find α, ε ∈ R+, and an
(m + n)-qubit unitary matrix UA so that that

‖A− α (〈0m| ⊗ In) UA (|0m〉 ⊗ In) ‖ ≤ ε,

then UA is called an (α,m, ε)-block-encoding of A.

• A “gray box” for the read-in problem.

• Many examples of block-encoding: density operators, POVM
operators, d-sparse matrices, addition and multiplication of
block-encoded matrices (Gilyén-Su-Low-Wiebe, 2019)

20

Block-encoding

Definition
Given an n-qubit matrix A, if we can find α, ε ∈ R+, and an
(m + n)-qubit unitary matrix UA so that that

‖A− α (〈0m| ⊗ In) UA (|0m〉 ⊗ In) ‖ ≤ ε,

then UA is called an (α,m, ε)-block-encoding of A.

• A “gray box” for the read-in problem.

• Many examples of block-encoding: density operators, POVM
operators, d-sparse matrices, addition and multiplication of
block-encoded matrices (Gilyén-Su-Low-Wiebe, 2019)

21

Block-encoding for Green’s function computation

• Jordan-Wigner transformation

âi = Z⊗(i−1) ⊗ 1
2

(X + iY)⊗ I⊗(N−i),

â†i = Z⊗(i−1) ⊗ 1
2

(X − iY)⊗ I⊗(N−i), n̂i =
1
2

(I − Zi).

• âi , â
†
j , n̂i are not unitary, but X ,Y ,Z , I are (Pauli-matrices).

• Provide a (1,1,0)-block-encodings of âi , â
†
j , n̂i .

21

Block-encoding for Green’s function computation

• Jordan-Wigner transformation

âi = Z⊗(i−1) ⊗ 1
2

(X + iY)⊗ I⊗(N−i),

â†i = Z⊗(i−1) ⊗ 1
2

(X − iY)⊗ I⊗(N−i), n̂i =
1
2

(I − Zi).

• âi , â
†
j , n̂i are not unitary, but X ,Y ,Z , I are (Pauli-matrices).

• Provide a (1,1,0)-block-encodings of âi , â
†
j , n̂i .

21

Block-encoding for Green’s function computation

• Jordan-Wigner transformation

âi = Z⊗(i−1) ⊗ 1
2

(X + iY)⊗ I⊗(N−i),

â†i = Z⊗(i−1) ⊗ 1
2

(X − iY)⊗ I⊗(N−i), n̂i =
1
2

(I − Zi).

• âi , â
†
j , n̂i are not unitary, but X ,Y ,Z , I are (Pauli-matrices).

• Provide a (1,1,0)-block-encodings of âi , â
†
j , n̂i .

22

Basic quantum strategy: Hadamard test

• U is an n-qubit unitary matrix. Hadamard gate H := 1√
2

(
1 1
1 −1

)
|0〉 H H

|φ〉 U

• Success probability of measuring 0 is

p(0) =
1
2

(1 + Re 〈φ|U|φ〉)

• A similar circuit with success probability 1
2(1 + Im 〈φ|U|φ〉)

⇒ Obtain 〈φ|U|φ〉

22

Basic quantum strategy: Hadamard test

• U is an n-qubit unitary matrix. Hadamard gate H := 1√
2

(
1 1
1 −1

)
|0〉 H H

|φ〉 U

• Success probability of measuring 0 is

p(0) =
1
2

(1 + Re 〈φ|U|φ〉)

• A similar circuit with success probability 1
2(1 + Im 〈φ|U|φ〉)

⇒ Obtain 〈φ|U|φ〉

22

Basic quantum strategy: Hadamard test

• U is an n-qubit unitary matrix. Hadamard gate H := 1√
2

(
1 1
1 −1

)
|0〉 H H

|φ〉 U

• Success probability of measuring 0 is

p(0) =
1
2

(1 + Re 〈φ|U|φ〉)

• A similar circuit with success probability 1
2(1 + Im 〈φ|U|φ〉)

⇒ Obtain 〈φ|U|φ〉

23

Hadamard test for Green’s function computation
• If we can block-encode the inverse:

(
z −

[
Ĥ − E0

])−1
.

Product of block-encoded matrices A = âi

(
z −

[
Ĥ − E0

])−1
â†j ,

call it UA, which is a (1,m, ε)-block-encoding.

• Hadamard test circuit

|0〉 H H

|0m〉
UA

|φ〉

• Success probability p(0) = 1
2(1 + Re 〈φ|A|φ〉).

• Cost: dominated by the circuit depth of UA.

23

Hadamard test for Green’s function computation
• If we can block-encode the inverse:

(
z −

[
Ĥ − E0

])−1
.

Product of block-encoded matrices A = âi

(
z −

[
Ĥ − E0

])−1
â†j ,

call it UA, which is a (1,m, ε)-block-encoding.

• Hadamard test circuit

|0〉 H H

|0m〉
UA

|φ〉

• Success probability p(0) = 1
2(1 + Re 〈φ|A|φ〉).

• Cost: dominated by the circuit depth of UA.

23

Hadamard test for Green’s function computation
• If we can block-encode the inverse:

(
z −

[
Ĥ − E0

])−1
.

Product of block-encoded matrices A = âi

(
z −

[
Ĥ − E0

])−1
â†j ,

call it UA, which is a (1,m, ε)-block-encoding.

• Hadamard test circuit

|0〉 H H

|0m〉
UA

|φ〉

• Success probability p(0) = 1
2(1 + Re 〈φ|A|φ〉).

• Cost: dominated by the circuit depth of UA.

23

Hadamard test for Green’s function computation
• If we can block-encode the inverse:

(
z −

[
Ĥ − E0

])−1
.

Product of block-encoded matrices A = âi

(
z −

[
Ĥ − E0

])−1
â†j ,

call it UA, which is a (1,m, ε)-block-encoding.

• Hadamard test circuit

|0〉 H H

|0m〉
UA

|φ〉

• Success probability p(0) = 1
2(1 + Re 〈φ|A|φ〉).

• Cost: dominated by the circuit depth of UA.

24

Estimate the circuit depth

• Determined by the depth of block-encoding
(

z −
[
Ĥ − E0

])−1
,

assume well conditioned

• If we can query a block-encoding of Ĥ, then the circuit depth
∝ αH ∼

∥∥∥Ĥ
∥∥∥ (dependence on other parameters are omitted)

• Basically, this is due to the polynomial approximation of x 7→ x−1

on the interval
[
1,
∥∥∥Ĥ
∥∥∥].

24

Estimate the circuit depth

• Determined by the depth of block-encoding
(

z −
[
Ĥ − E0

])−1
,

assume well conditioned

• If we can query a block-encoding of Ĥ, then the circuit depth
∝ αH ∼

∥∥∥Ĥ
∥∥∥ (dependence on other parameters are omitted)

• Basically, this is due to the polynomial approximation of x 7→ x−1

on the interval
[
1,
∥∥∥Ĥ
∥∥∥].

24

Estimate the circuit depth

• Determined by the depth of block-encoding
(

z −
[
Ĥ − E0

])−1
,

assume well conditioned

• If we can query a block-encoding of Ĥ, then the circuit depth
∝ αH ∼

∥∥∥Ĥ
∥∥∥ (dependence on other parameters are omitted)

• Basically, this is due to the polynomial approximation of x 7→ x−1

on the interval
[
1,
∥∥∥Ĥ
∥∥∥].

25

Problem: large block-encoding factor αH

• Recall

Ĥ0 =
N∑

ij=1

Tij â
†
i âj , Ĥ1 =

N∑
ijkl=1

Vpqrsâ†i â
†
j âl âk .

• Planewave / real space refined spatial discretization:∥∥∥Ĥ
∥∥∥ ≈ ∥∥∥Ĥ0

∥∥∥� ∥∥∥Ĥ1

∥∥∥
• Hubbard model, large U limit:

∥∥∥Ĥ
∥∥∥ ≈ ∥∥∥Ĥ1

∥∥∥� ∥∥∥Ĥ0

∥∥∥
• Let us write Ĥ = Â + B̂, where

∥∥∥Â
∥∥∥� ∥∥∥B̂

∥∥∥.

25

Problem: large block-encoding factor αH

• Recall

Ĥ0 =
N∑

ij=1

Tij â
†
i âj , Ĥ1 =

N∑
ijkl=1

Vpqrsâ†i â
†
j âl âk .

• Planewave / real space refined spatial discretization:∥∥∥Ĥ
∥∥∥ ≈ ∥∥∥Ĥ0

∥∥∥� ∥∥∥Ĥ1

∥∥∥
• Hubbard model, large U limit:

∥∥∥Ĥ
∥∥∥ ≈ ∥∥∥Ĥ1

∥∥∥� ∥∥∥Ĥ0

∥∥∥
• Let us write Ĥ = Â + B̂, where

∥∥∥Â
∥∥∥� ∥∥∥B̂

∥∥∥.

25

Problem: large block-encoding factor αH

• Recall

Ĥ0 =
N∑

ij=1

Tij â
†
i âj , Ĥ1 =

N∑
ijkl=1

Vpqrsâ†i â
†
j âl âk .

• Planewave / real space refined spatial discretization:∥∥∥Ĥ
∥∥∥ ≈ ∥∥∥Ĥ0

∥∥∥� ∥∥∥Ĥ1

∥∥∥
• Hubbard model, large U limit:

∥∥∥Ĥ
∥∥∥ ≈ ∥∥∥Ĥ1

∥∥∥� ∥∥∥Ĥ0

∥∥∥
• Let us write Ĥ = Â + B̂, where

∥∥∥Â
∥∥∥� ∥∥∥B̂

∥∥∥.

25

Problem: large block-encoding factor αH

• Recall

Ĥ0 =
N∑

ij=1

Tij â
†
i âj , Ĥ1 =

N∑
ijkl=1

Vpqrsâ†i â
†
j âl âk .

• Planewave / real space refined spatial discretization:∥∥∥Ĥ
∥∥∥ ≈ ∥∥∥Ĥ0

∥∥∥� ∥∥∥Ĥ1

∥∥∥
• Hubbard model, large U limit:

∥∥∥Ĥ
∥∥∥ ≈ ∥∥∥Ĥ1

∥∥∥� ∥∥∥Ĥ0

∥∥∥
• Let us write Ĥ = Â + B̂, where

∥∥∥Â
∥∥∥� ∥∥∥B̂

∥∥∥.

26

Green’s functions of quantum many-body systems

Main result (informal)

Algorithm Queries to block-
encodings

HHL Õ(|z|+αH
η3ε2)

LCU/QSVT Õ(|z|+αH
η2ε

)

Our work Õ(αB
σ̃2
minε

)

• Ĥ = Â + B̂, with σ̃min = Ω(η/αB), and
∥∥∥Â
∥∥∥� ∥∥∥B̂

∥∥∥.

• Block-encodings in our work involves fast inversion.

27

Fast inversion

• Key idea: instead of block-encode a matrix A, if ‖A‖ is large but∥∥A−1
∥∥ is small, try to directly block-encode A−1, instead of

relying on a standard QLSP solver.

• Fast block-encoding of the inverse (there is a subtle difference
from fast solution of the linear system)

• Parallel to fast-forwarding.

• Not violating lower bound by (Harrow-Hassidim-Lloyd, 2009)

27

Fast inversion

• Key idea: instead of block-encode a matrix A, if ‖A‖ is large but∥∥A−1
∥∥ is small, try to directly block-encode A−1, instead of

relying on a standard QLSP solver.

• Fast block-encoding of the inverse (there is a subtle difference
from fast solution of the linear system)

• Parallel to fast-forwarding.

• Not violating lower bound by (Harrow-Hassidim-Lloyd, 2009)

27

Fast inversion

• Key idea: instead of block-encode a matrix A, if ‖A‖ is large but∥∥A−1
∥∥ is small, try to directly block-encode A−1, instead of

relying on a standard QLSP solver.

• Fast block-encoding of the inverse (there is a subtle difference
from fast solution of the linear system)

• Parallel to fast-forwarding.

• Not violating lower bound by (Harrow-Hassidim-Lloyd, 2009)

27

Fast inversion

• Key idea: instead of block-encode a matrix A, if ‖A‖ is large but∥∥A−1
∥∥ is small, try to directly block-encode A−1, instead of

relying on a standard QLSP solver.

• Fast block-encoding of the inverse (there is a subtle difference
from fast solution of the linear system)

• Parallel to fast-forwarding.

• Not violating lower bound by (Harrow-Hassidim-Lloyd, 2009)

28

Fast inversion of diagonal matrices

• D = diag(Dii):
∥∥D−1

∥∥ = min |Dii | = Ω(1), ‖D‖ = max |Dii | � 1

• Assume OD |i〉 |0l〉 = |i〉 |Dii〉 , i ∈ [N]

• Circuit U ′D for the block-encoding of D−1 (classical arithmetic)

|b〉

OD O†D
|0l〉

INV
|0〉

• Circuit depth is independent of
∥∥D−1

∥∥ , ‖D‖

29

Fast inversion of diagonal matrices

• The inversion circuit INV (with α′D ≥ ‖D−1‖):

INV |ζ〉 |0〉 = |ζ〉

(
1
α′Dζ

|0〉+

√
1−

∣∣∣ 1
α′Dζ

∣∣∣2 |1〉) .
• Output (α′D ∼ ‖D−1‖):

U ′D |b〉 |0l〉 |0〉 = α′D
∑

i

(Dii)
−1bi |i〉 |0l〉 |0〉

+
∑

i

√
1− |(α′DDii)−1|2bi |i〉 |0l〉 |1〉 .

• U ′D is an (α′D,m
′
D,0)-block-encoding of D−1 with α′D = O(‖D−1‖)

and m′D = O(l + poly log(N))

30

Example: elliptic partial differential equation
• Consider a 1D Poisson’s equation:

−∆u(r) + u(r) = b(r), r ∈ Ω = [0,1]. (1)

• Discretize under planewave (Fourier) basis exp(2πikr):
1

1 + (2π)2

. . .
1 + (2πN)2




û0
û1
...

ûN

 =


b̂0

b̂1
...

b̂N


• αD = O(N2), α′D = O(1), κ(D) = O(N2)

• b̂j decays rapidly as j →∞: ‖D−1b‖ = Θ(1)

• Cost: O(α′D/‖D−1 |b〉 ‖) = O(1)

• QSVT still scales O(N2)

31

Fast inversion beyond diagonal matrices

• Diagonal matrices D: U ′D

• 1-sparse matrices A = ΠD
• if we have access to Π−1: A−1 = D−1Π−1

• Also fast-invertible if we only have query access to the column of
the single nonzero element in each row as well as to the value of
the each element

• Normal matrices A = VDV †

U ′A = (V ⊗ Il+1)U ′D(V † ⊗ Il+1).

32

Preconditioned quantum linear system solver
• Consider

(A + B) |x〉 ∼ |b〉

• Assume very large ‖A‖ and moderate ‖B‖, ‖A−1‖, ‖(A + B)−1‖,
thus κ(A + B) ∼ O(‖A‖)

• An example: −∆u(r) + V (r)u(r) = b(r)

• Oracles:
• U ′A: an (α′A,m

′
A,0)-block-encoding of A−1 prepared by the fast

inversion procedure

• UB: an (αB,mB,0)-block-encoding of B

• Ub: |b〉 = Ub |0n〉

• Preconditioner: A−1

(I + A−1B) |x〉 ∼ A−1 |b〉

• Condition number:
κ(I + A−1B) ≤

(
1 + ‖(A + B)−1‖‖B‖

) (
1 + ‖A−1‖‖B‖

)

33

Preconditioned quantum linear system solver

A−1 → A−1B → I + A−1B → (I + A−1B)−1

→ (I + A−1B)−1A−1 = (A + B)−1

• A
(

4α′A
3σ̃min

,2m′A + mB + 3, δ′
)

-block-encoding of (A + B)−1 using

O
(
α′AαB
σ̃min

log
(

α′A
δ′σ̃min

))
queries, with

σ̃min ≥ 1/(1 + ‖(A + B)−1‖‖B‖).

• Solving (A + B) |x〉 ∼ |b〉: O
(

α′A
2αB

ξσ̃2
min

log
(

α′A
σ̃minξε

))
queries, with

ξ = ‖(A + B)−1 |b〉 ‖

• Worst case: ξ ∼ ‖(A + B)‖−1 ∼ Ω(1/κ((A + B)))

• Best case: ξ ∼ O(1)

• Outperform QSVT in both worst and best case

34

Advertisements
1. IPAM Long Program,
3/7-6/10, 2022

2. IPAM workshop on
“Quantum numerical linear
algebra”, 1/24-1/27, 2022
• Aram Harrow, MIT

• Lin Lin, UC Berkeley

• Thomas Vidick, Caltech

• Nathan Wiebe, University of
Toronto

(Website available soon)

35

Acknowledgment

Thank you for your attention!

Lin Lin
https://math.berkeley.edu/~linlin/

https://math.berkeley.edu/~linlin/

36

A concrete, toy example

A =
1
4

X +
3
4

I =

(
0.75 0.25
0.25 0.75

)
• X , I are unitaries. A is a linear combination of unitaries (LCU),

and is itself non-unitary. κ(A) = 2 (invertible)

• Extend 1-qubit non-unitary matrix to a 2-qubit unitary matrix

UA =

(
A ·
· ·

)

36

A concrete, toy example

A =
1
4

X +
3
4

I =

(
0.75 0.25
0.25 0.75

)
• X , I are unitaries. A is a linear combination of unitaries (LCU),

and is itself non-unitary. κ(A) = 2 (invertible)

• Extend 1-qubit non-unitary matrix to a 2-qubit unitary matrix

UA =

(
A ·
· ·

)

37

A concrete, toy example

• An example of block-encoding. Unitary. Use 1 ancilla qubit.

UA =


0.750 0.250 0.433 −0.433
0.250 0.750 −0.433 0.433
0.433 −0.433 0.250 0.750
−0.433 0.433 0.750 0.250



• UA should be viewed as a mapping on (C2)⊗2.

|0〉
UA

|ψ〉 A |ψ〉 (upon measuring 0)

37

A concrete, toy example

• An example of block-encoding. Unitary. Use 1 ancilla qubit.

UA =


0.750 0.250 0.433 −0.433
0.250 0.750 −0.433 0.433
0.433 −0.433 0.250 0.750
−0.433 0.433 0.750 0.250



• UA should be viewed as a mapping on (C2)⊗2.

|0〉
UA

|ψ〉 A |ψ〉 (upon measuring 0)

38

A concrete, toy example

• Inverse

A−1 =

(
1.5 −0.5
−0.5 1.5

)
Note

∥∥A−1
∥∥ = 2 > 1, no hope to have

UA−1 =

(
A−1 ·
· ·

)
• How about (with α > 1)

UA−1 ≈
(

A−1/α ·
· ·

)
• Construct UA−1 using UA, U†A, and simple quantum gates (in this

case UA = U†A).

38

A concrete, toy example

• Inverse

A−1 =

(
1.5 −0.5
−0.5 1.5

)
Note

∥∥A−1
∥∥ = 2 > 1, no hope to have

UA−1 =

(
A−1 ·
· ·

)
• How about (with α > 1)

UA−1 ≈
(

A−1/α ·
· ·

)
• Construct UA−1 using UA, U†A, and simple quantum gates (in this

case UA = U†A).

38

A concrete, toy example

• Inverse

A−1 =

(
1.5 −0.5
−0.5 1.5

)
Note

∥∥A−1
∥∥ = 2 > 1, no hope to have

UA−1 =

(
A−1 ·
· ·

)
• How about (with α > 1)

UA−1 ≈
(

A−1/α ·
· ·

)
• Construct UA−1 using UA, U†A, and simple quantum gates (in this

case UA = U†A).

39

Such an UA−1 exists

UA−1 =



0.075 −0.025 0.0 0.0 0.271j 0.728j −0.442j 0.442j
−0.025 0.075 0.0 0.0 0.728j 0.271j 0.442j −0.442j

0.0 0.0 0.075 −0.025 −0.442j 0.442j −0.271j −0.728j
0.0 0.0 −0.025 0.075 0.442j −0.442j −0.728j −0.271j

0.271j 0.728j −0.442j 0.442j 0.075 −0.025 0.0 0.0
0.728j 0.271j 0.442j −0.442j −0.025 0.075 0.0 0.0
−0.442j 0.442j −0.271j −0.728j 0.0 0.0 0.075 −0.025
0.442j −0.442j −0.728j −0.271j 0.0 0.0 −0.025 0.075



• We find

A−1/α =

(
0.075 −0.025
−0.025 0.075

)
, α = 20.

• Use 2 ancilla qubits.

39

Such an UA−1 exists

UA−1 =



0.075 −0.025 0.0 0.0 0.271j 0.728j −0.442j 0.442j
−0.025 0.075 0.0 0.0 0.728j 0.271j 0.442j −0.442j

0.0 0.0 0.075 −0.025 −0.442j 0.442j −0.271j −0.728j
0.0 0.0 −0.025 0.075 0.442j −0.442j −0.728j −0.271j

0.271j 0.728j −0.442j 0.442j 0.075 −0.025 0.0 0.0
0.728j 0.271j 0.442j −0.442j −0.025 0.075 0.0 0.0
−0.442j 0.442j −0.271j −0.728j 0.0 0.0 0.075 −0.025
0.442j −0.442j −0.728j −0.271j 0.0 0.0 −0.025 0.075



• We find

A−1/α =

(
0.075 −0.025
−0.025 0.075

)
, α = 20.

• Use 2 ancilla qubits.

40

Cost analysis
Lemma (Tong, An, Wiebe, L.)
Given

1. State |φ〉 prepared with trace-distance error ς by a unitary circuit
Uφ with probability at least p

2. A is given through its (α,m,0)-block-encoding UA,
Then 〈φ|A|φ〉 can be estimated to precision 2ας + ε with probability at
least 1− δ, using

1. O((α/ε) log(1/δ)) applications of UA and its inverse
2. O((α/

√
pε) log(1/ς) log(1/δ)) applications of Uφ and its inverse

3. O((α/
√

pε) log(1/ς) log(1/δ)) other one- and two-qubit gates.

• Compute Green’s function, using amplitude estimation to
improve dependence on ε (Brassard-Høyer-Mosca-Tapp, 2002)

• There is some (but not a whole lot) of rooms to maneuver, but we
can ask what is the circuit depth for UA.

40

Cost analysis
Lemma (Tong, An, Wiebe, L.)
Given

1. State |φ〉 prepared with trace-distance error ς by a unitary circuit
Uφ with probability at least p

2. A is given through its (α,m,0)-block-encoding UA,
Then 〈φ|A|φ〉 can be estimated to precision 2ας + ε with probability at
least 1− δ, using

1. O((α/ε) log(1/δ)) applications of UA and its inverse
2. O((α/

√
pε) log(1/ς) log(1/δ)) applications of Uφ and its inverse

3. O((α/
√

pε) log(1/ς) log(1/δ)) other one- and two-qubit gates.

• Compute Green’s function, using amplitude estimation to
improve dependence on ε (Brassard-Høyer-Mosca-Tapp, 2002)

• There is some (but not a whole lot) of rooms to maneuver, but we
can ask what is the circuit depth for UA.

