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Fast inversion, preconditioned quantum linear system solvers, fast Green’s function
computation, and fast evaluation of matrix functions, (Tong, An, Wiebe, L., 2008.13295)



A ritual
There is perhaps a widespread belief that a talk on quantum

Figure. A superposition of
Feynmans

Solve nature with nature:
. If you want to make a simulation of nature, you'd better make

it quantum mechanical, and by golly it's a wonderful problem, be-
cause it doesn’t look so easy.

— Richard P Feynman (1981) 1st Conference on Physics and Com-
putation, MIT



Quantum computation meets the public’s attention

Google, Nature 2019 USTC, Science 2020
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e After about four decades, quantum supremacy has been reached: the
point where quantum computers can do things that classical computers
cannot, regardless of whether those tasks are useful.
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e After about four decades, quantum supremacy has been reached: the
point where quantum computers can do things that classical computers
cannot, regardless of whether those tasks are useful.

¢ s controlling large-scale quantum systems merely really, really hard, or
is it ridiculously hard? — John Preskill (2012)

e Quantum computer does anything useful? called quantum advantage.



Quantum computer: current and (near, possible) future

IBM’s road map (02/2021)

We have a few
quantum Development Roadmap
computers..

Quantum

Berkeley
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Quantum numerical linear algebra

e Solving linear systems, eigenvalue problems, matrix
exponentials, least square problems, singular value
decompositions etc on a quantum computer.

e Many interesting, exciting progresses in the past few years.
Reasonable way towards “quantum advantage”.

Related to “Quantum machine learning”.

Solving linear equations

Ax=>b

Quantum linear system problem (QLSP)

Alx) o< |b)

A € CN*N: cost can be O(polylog(N)).



Compare the complexities of QLSP solvers
Significant progress in the past few years: Near-optimal complexity

matching lower bounds.

Algorithm Query complexity | Remark
HHL,(Harrow-Hassidim-Lloyd, O(K?/€) w.  VTAA, complexity becomes
2009) O(r/€%) (Ambainis 2010)

Linear combination of unitaries | O(x2polylog(1/¢)) | w.  VTAA, complexity becomes

(LCU),(Childs-Kothari-Somma,
2017)

O(r poly log(1/e))

Quantum singular value transfor-
mation (QSVT) (Gilyén-Su-Low-
Wiebe, 2019)

O(r? log(1/e))

Queries the RHS only O(x) times

Randomization = method  (RM)
(Subasi-Somma-Orsucci, 2019)

O(k/e€)

Prepares a mixed state; w. re-
peated phase estimation, complex-
ity becomes O(«x poly log(1/¢))

Time-optimal adiabatic quantum | O(x polylog(1/€)) | No need for any amplitude amplifi-
computing  (AQC(exp)) (An-L., cation. Use time-dependent Hamil-
2019, 1909.05500) tonian simulation.

Eigenstate filtering (L.-Tong, | O(x log(1/€)) No need for any amplitude amplifi-

1910.14596, Quantum 2020)

cation. Does not rely on any com-
plex subroutines.




Electron excitation
- Photoemission spectroscopy
hAw + EI(\’, = E1l;1—1 + Exin - Energy conservation
EY: Ground state energy of N-electron system

EL_,: i-th excited state of N — 1 electron system
Eyin: Kinetic energy of out-going electron (measurement)

- Quasi-particle energy \ ...... g

& = E§ — Ey_1 = Epin — ho.

Source: Wikipedia




Quasi-particle and quasi-horse
“Quasi-horse”: bare horse + response of dust (Mattuck, 1976)

Richard D. Mattuck

real Puv-"’[c‘e

real horse quas horse Second Edition

A Guide to
Feynman Diagrams
in the Many-Body

Problem

Quasi-particle: bare particle + response of material
Quasi-electron: added electron + response

Quasi-hole: removed electron + response 4mmm Photoemission
experiment!



Chemistry and materials

- lonization potential (minimal energy to remove an electron)
I=Ey_1—Ey

- Electron affinity (maximal energy released to add an electron)
A=Ej~Ejn

- Fundamental band gap
Ej=1—-A=Ej, —2EQ+Eq_4

Curvature-like quantity /

- Key quantity in chemistry and materials



Spectroscopic information and Green’s function

eee ooe see Re

Spectral function, 2D Hubbard model.
Ak, w) = — L Im(G(k, w))

\/ DMFT calculation: [Mejuto-Zaera,
Zepeda-Nunez, Lindsey, Tubman,
Whaley, L., 2020]

X M r b

Momentum

X

e |ehmann representation of the single-particle Green’s function

fof!

—en+insgn(en — p)’

n=0".

ep: quasi-particle energy; f,: quasi-particle wavefunction
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— FO n
€n = ENe - ENe—l

Spectral function, 2D Hubbard model.
Ak, w) = — L Im(G(k, w))

\/ DMFT calculation: [Mejuto-Zaera,
Zepeda-Nunez, Lindsey, Tubman,
Whaley, L., 2020]

r X M r 4
Momentum

X

e |ehmann representation of the single-particle Green’s function

Gl n=0".
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ep: quasi-particle energy; f,: quasi-particle wavefunction

* Poles: ionization potential, electron affinity.



Spectroscopic information and Green’s function

e

Spectral function, 2D Hubbard model.
Ak, w) = — L Im(G(k, w))

\/ DMFT calculation: [Mejuto-Zaera,
Zepeda-Nunez, Lindsey, Tubman,
Whaley, L., 2020]

r X M r 4
Momentum

X

e |ehmann representation of the single-particle Green’s function

fof!

—en+insgn(en — p)’

n=0".

ep: quasi-particle energy; f,: quasi-particle wavefunction

* Poles: ionization potential, electron affinity.

* Many experiments: photoemission spectroscopy; inverse
photoemission spectroscopy; ARPES...
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Quantum many-body problem

e N sites (spin-orbitals)
° 3, é,T, h;: annihilation, creation, number operator at site i.
e Many-body Hamiltonian (dimension: 2")

H= Ho + H1
~—~
non-interacting  interacting

N
Ho=>" Tjaly, M= Z Viwal a aja.
=1 k=1

® |Wy): ground state with N, electrons (Ne < 2N)
Ey: ground state energy.



Green’s function

¢ Time-ordered single-particle Green’s function (or Green’s
function for short) in the frequency domain: map C — CN*N
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Green’s function

¢ Time-ordered single-particle Green’s function (or Green’s
function for short) in the frequency domain: map C — CN*N

G(z) = GH(2) + GU(2).

* Advanced (G1)) and retarded (G(~)) Green’s functions
. -1,

é,' (Z— |:H—E0:|) a}r \Uo>

wo> .

Gi(2) = <w0

6 @)= (w8 (z+ [fi-&1]) '

e Assume |Im(z)| > n > 0 (broadening parameter)



Simplest setting: non-interacting system

1 /:/ = I:/O = Z,’-}I:1 T,]éTé/

]



Simplest setting: non-interacting system

A A N ha
e H=Hy = 2021 T,-,-a,Ta,-.
e Very simple analytic solution via a (small) matrix inversion

fofl
Go(2)=(z-T) "' =) ", Th=enh
n

Z— €np
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Simplest setting: non-interacting system

~ ~ N R
H= Ho = 2021 T,-,-a,Ta,-.

Very simple analytic solution via a (small) matrix inversion

f.fl
GO(Z) = (Z - T)_1 = Z L 5 Tfn = 5nfn-
n

Z— €np

Bare Green'’s function (bare horse)

With interaction H = Hy + H;. G(z): quasi-horse

Self energy
Y(2) =G ' (2) - G, (2).
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Next simplest setting: quantum impurity

Example: Single-impurity Anderson model ©0000000000
(SIAM) .14
H=>edit+ 3 el e, + > (Wieo + viehh) + UK
g iie i —_—
> H
Ho

Perturbation to the Green’s function is global.

Self energy X (z) is only nonzero on the impurity.

Foundation of DMFT / CT-QMC etc. “Folk
theorem” at least since Feynman (with
diagrammatic arguments)

Non-perturbative proof (for general impurities):
[L.-Lindsey, Ann. Henri Poincare 2020]
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Computing Green’s functions (with general interaction)

e With HF/DFT: essentially a non-interacting picture

e Small A;: many-body perturbation theory (MBPT). GF2, GW,

SOSEX, GFCC..
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e Large H;: exact diagonalization / Cl, QMC, DMRG..

e Quantum computer
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Direct computation of G: strategy 1

e Focus on G (G(-) is similar)

G,(-,-H(z) = <\U0 a (z — [Fl_ EOD_1 g,jT

)

* ;) = A/T |Wo): (sparse) matrix-vector multiplication.

R —1

* ()= (z — [H — EO]) |®;): solve a big linear system. Most
challenging

. G,(','+)(Z) = (®}|¢;): inner product.

e Seems to be a lucid approach.



Direct computation of G: strategy 2

* Rewrite

G,(]-H(z) = <W0 E? (z — [F/f Equ g,/T

Vo) i~ (VolA¥o
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Direct computation of G: strategy 2

* Rewrite

G,(]-H(z) = <W0 E? (z — [F/f Equ g,/T

Vo) = (VoA
e Perform “matrix-multiplication”
N —1
A=3 (z— [H— EOD af

e Sounds worse / crazier, but this is what we are going to do.
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Block-encoding

e Quantum gates have to be unitary.
N r —1 AT . .
°c A=g <z - [H - EOD g; is not unitary.

¢ |dea: extend n-qubit non-unitary matrix to a (n + m)-qubit unitary
matrix (Low-Chuang, 2016; called “standard form” initially)

u= (A )



Block-encoding

Definition
Given an n-qubit matrix A, if we can find a,e € Ry, and an
(m -+ n)-qubit unitary matrix U so that that

IA = a (07 @ In) Ua(I07) @ In) || < e,

then Uy is called an («, m, €)-block-encoding of A.

e A “gray box” for the read-in problem.
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Block-encoding

Definition
Given an n-qubit matrix A, if we can find a,e € Ry, and an
(m -+ n)-qubit unitary matrix U so that that

IA = a (07 @ In) Ua(I07) @ In) || < e,

then Uy is called an («, m, €)-block-encoding of A.
e A “gray box” for the read-in problem.
* Many examples of block-encoding: density operators, POVM

operators, d-sparse matrices, addition and multiplication of
block-encoded matrices (Gilyén-Su-Low-Wiebe, 2019)
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Block-encoding for Green’s function computation

e Jordan-Wigner transformation
5 =2%0"g %(X +iY) @ FN=D

R . 1 ) . . 1
a;.f = z%0-1) & E(X_ iY)® [PIN=0 -y = E(I_ Zj).

° 3, é}, hj are not unitary, but X, Y, Z, I are (Pauli-matrices).

e Provide a (1, 1,0)-block-encodings of &, é}, h;.
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Basic quantum strategy: Hadamard test

e Uis an n-qubit unitary matrix. Hadamard gate H := % <1 1 >

1 -1
0)

9) (U]

e Success probability of measuring 0 is
1
p(0) = 5(1 + Re(¢|U|¢))

* A similar circuit with success probability 3(1 + Im (¢|U|¢))
= Obtain (¢|U|¢)
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Hadamard test for Green’s function computatgon
e |f we can block-encode the inverse: (z — [Fl — EOD

- —1
Product of block-encoded matrices A = 3; (z — [H — EOD é/T,
call it Ua, which is a (1, m, €)-block-encoding.

e Hadamard test circuit

0 i}

07)

Ua
)

* Success probability p(0) = (1 + Re (¢|A|¢)).

e Cost: dominated by the circuit depth of U,.
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Estimate the circuit depth

N -1
e Determined by the depth of block-encoding (z — [H — Eo]) ,
assume well conditioned

e If we can query a block-encoding of H, then the circuit depth
Xy ~ HF/H (dependence on other parameters are omitted)

e Basically, this is due to the polynomial approximation of x — x~1
on the interval [1, I:Im
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Problem: large block-encoding factor ay

® Recall

N N
£ ata By 55t 5 3
ji=1 ijki=1

e Planewave / real space refined spatial discretization:
|~ [Fal| > ||

* Hubbard model, large U limit: HI:/H ~ H/:h H > HHOH

e Let us write H = A+ B, where H?\H > HBH
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Green’s functions of quantum many-body systems

Main result (informal)

Algorithm Queries to block-
encodings

HHL O(Z534)

LCU/QSVT 6(”‘;%)

Our work O(5%)

o H=A+ B, with 5min — Q(n/ag), and HAH > HBH

¢ Block-encodings in our work involves fast inversion.
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Fast inversion

¢ Key idea: instead of block-encode a matrix A, if |A|| is large but
|A="|| is small, try to directly block-encode A, instead of
relying on a standard QLSP solver.

e Fast block-encoding of the inverse (there is a subtle difference
from fast solution of the linear system)

¢ Parallel to fast-forwarding.

e Not violating lower bound by (Harrow-Hassidim-Lloyd, 2009)



Fast inversion of diagonal matrices

D = diag(Dj): HD*1 H = min|D;| = Q(1), ||D|| = max|D;| > 1

Assume Op |i) [0") = |i) |D;), i€ [N]

Circuit Up, for the block-encoding of D~ (classical arithmetic)

b)
o
0)

INV

Circuit depth is independent of |[D~1||, || D||



Fast inversion of diagonal matrices

e The inversion circuit INV (with o/, > |D~)):

) +

1 1 2
INV[¢) [0) = [¢) (O/DC e !1>>
e Output (o/y ~ |[D7]):
Up |b) \0/> 0) = O/DZ i)' b; |i) 0') [0)

+Z¢1—\ D)~ 2b; iy 10) [1)

e Upis an (a]y, m), 0)-block-encoding of D~ with o/, = O(||D~1]|)
and mp, = O(/ + poly log(N))




Example: elliptic partial differential equation
¢ Consider a 1D Poisson’s equation:

—Au(r)+u(r)=b(r), reQ=][0,1]. (1)

Discretize under planewave (Fourier) basis exp(2rikr):

1 Uo by
1+ (27)? Uy by
1+ (27N)? Uy BN

* ap = O(N?), o, = O(1), k(D) = O(N?)

b; decays rapidly as j — oo: ||D~1b|| = ©(1)

Cost: O(ap/[D~"|b) [) = O(1)

QSVT still scales O(N?)



Fast inversion beyond diagonal matrices

* Diagonal matrices D: Up,

® 1-sparse matrices A=T1D
e if we have accesstoN—": A=1 = D-"nN-1

* Also fast-invertible if we only have query access to the column of

the single nonzero element in each row as well as to the value of
the each element

e Normal matrices A = VDV

= (V& l)Up(VI & liyq).



Preconditioned quantum linear system solver
¢ Consider
(A+ B)|x) ~ |b)

Assume very large ||A]| and moderate |||, | A~"|,I|(A+ B)~'||
thus x(A + B) ~ O(|Al)

An example: —Au(r) + V(r)u(r) = b(r)

Oracles:
* U,: an (a/y, m,, 0)-block-encoding of A~' prepared by the fast
inversion procedure
® Ug: an (ag, mg,0)-block-encoding of B
° Uy |b) = Uy |0™)
Preconditioner: A~
(I+A7'B)|x) ~ A1 |b)



Preconditioned quantum linear system solver
AT S ATBS I+ AT B (I+ATB)T
s (I+A'B) AT =(A+B)!
o A ( 4% ,2m, + mg+ 3 5’) -block-encoding of (A + B)~! using
O (’iAOfB log (%)) queries, with

Omin

Fmin > 1/(1+ [[(A+ B) ||| B])-

e Solving (A + B) |x) ~ |b): O (gaﬂ log (;g)) queries, with
E=(A+B) b

e Worst case: ¢ ~ [|(A+ B)[|~! ~ Q(1/k((A+ B)))

e Bestcase: £ ~ O(1)

e Qutperform QSVT in both worst and best case
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A concrete, toy example

A %X N 3 <0.75 O.25>

2/ =\o25 075

e X |are unitaries. Ais a linear combination of unitaries (LCU),
and is itself non-unitary. x(A) = 2 (invertible)



A concrete, toy example

A %X N 3 <0.75 O.25>

2/ =\o25 075

e X |are unitaries. Ais a linear combination of unitaries (LCU),
and is itself non-unitary. x(A) = 2 (invertible)

e Extend 1-qubit non-unitary matrix to a 2-qubit unitary matrix

u=("")



A concrete, toy example

¢ An example of block-encoding. Unitary. Use 1 ancilla qubit.

0.750 0.250| 0.433 —-0.433
Uy — 0.250 0.750) —0.433 0.433

AT 0.433 —-0.433 0.250 0.750
—-0.433 0433 0.750 0.250




A concrete, toy example

¢ An example of block-encoding. Unitary. Use 1 ancilla qubit.

0.750 0.250| 0.433 —-0.433
Uy — 0.250 0.750) —0.433 0.433

AT 0.433 —-0.433 0.250 0.750
—-0.433 0433 0.750 0.250

* U, should be viewed as a mapping on (C?)%2,

Y 7d

Ua
|ty —— — A|¢) (upon measuring 0)




A concrete, toy example

4 (15 -05
A —<—o.5 1.5>

Note [[A~"|| =2 > 1, no hope to have

U= (470

® Inverse



A concrete, toy example

4 (15 -05
A —<—o.5 1.5)

Note [[A~"|| =2 > 1, no hope to have

U= (470

e How about (with a2 > 1)

(1)

® Inverse



A concrete, toy example

4 (15 -05
AT = < —05 15
Note [[A~"|| =2 > 1, no hope to have
UA*‘ == < A . >
e How about (with a2 > 1)

(1)

e Construct Us—1 using U, UI\, and simple quantum gates (in this
case Uy = UI‘).

® Inverse



Such an U4+ exists

0.075 -0.029 0.0 0.0 0.271j 0728 —0.442j 0.442j

0.025 0.075 0.0 0.0 0.728] 0.271j 0.442j —0.442j

0.0 0.0 0.075 —0.025 —0.442j 0.442j —0.271j —0.728;
Uy = 0.0 00 -0.025 0.075 0.442j -0.442j -0.728] —0.271]
A7 T | 0271 0728] —0442j 0.442j 0.075 —0.025 0.0 0.0

0.728j 0271/ 0.442j —0.442j —0.025 0.075 0.0 0.0

—0.442j 0.442j -0271j -0.728j 0.0 0.0 0.075 —0.025

0.442j —0.442j —0.728j —0271j 0.0 00 -0.025 0.075

e We find

1, _( 0075 -0.025 B
A /a_<—o.025 0.075 ) a=20.



Such an U4+ exists

0.075 -0.029 0.0 0.0 0.271j 0728 —0.442j 0.442j

0.025 0.075 0.0 0.0 0.728] 0.271j 0.442j —0.442j

0.0 0.0 0.075 —0.025 —0.442j 0.442j —0.271j —0.728;
Uy = 0.0 00 -0.025 0.075 0.442j -0.442j -0.728] —0.271]
A7 T | 0271 0728] —0442j 0.442j 0.075 —0.025 0.0 0.0

0.728j 0271/ 0.442j —0.442j —0.025 0.075 0.0 0.0

—0.442j 0.442j -0271j -0.728j 0.0 0.0 0.075 —0.025

0.442j —0.442j —0.728j —0271j 0.0 00 -0.025 0.075

e We find

1, _( 0075 -0.025 B
A /a_<—o.025 0.075 ) =20

¢ Use 2 ancilla qubits.



Cost analysis
Lemma (Tong, An, Wiebe, L.)
Given

1. State |¢) prepared with trace-distance error ¢ by a unitary circuit
U, with probability at least p

2. Ais given through its («, m, 0)-block-encoding Ua,
Then (¢|A|p) can be estimated to precision 2as + ¢ with probability at
least1 — 6, using
1. O((«/e)log(1/0)) applications of Us and its inverse
2. O((o//Pe) log(1/s) log(1/0)) applications of U, and its inverse
3. O((o/+/Pe) log(1/s)log(1/0)) other one- and two-qubit gates.

e Compute Green’s function, using amplitude estimation to
improve dependence on e (Brassard-Hgyer-Mosca-Tapp, 2002)



Cost analysis
Lemma (Tong, An, Wiebe, L.)
Given

1. State |¢) prepared with trace-distance error ¢ by a unitary circuit
U, with probability at least p

2. Ais given through its («, m, 0)-block-encoding Ua,
Then (¢|A|p) can be estimated to precision 2as + ¢ with probability at
least1 — 6, using
1. O((«/e)log(1/0)) applications of Us and its inverse
2. O((o//Pe) log(1/s) log(1/0)) applications of U, and its inverse
3. O((o/+/Pe) log(1/s)log(1/0)) other one- and two-qubit gates.

e Compute Green’s function, using amplitude estimation to
improve dependence on e (Brassard-Hgyer-Mosca-Tapp, 2002)

* There is some (but not a whole lot) of rooms to maneuver, but we
can ask what is the circuit depth for Us,.



