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Abstract29

Shape plays a fundamental role in biology. Traditional phenotypic30

analysis methods measure some features but fail to measure the infor-31

mation embedded in shape comprehensively. To extract, compare, and32

analyze this information embedded in a robust and concise way, we turn33

to Topological Data Analysis (TDA), specifically the Euler Characteristic34

Transform (ECT). TDA measures shape comprehensively using mathe-35

matical terms based on algebraic topology features. To study its use, we36

compute both traditional and topological shape descriptors to quantify37

the morphology of 3121 barley seeds scanned with X-ray Computed To-38

mography (CT) technology at 127 micron resolution. The ECT measures39

shape by analyzing topological features of an object at thresholds across40

a number of directional axes. We optimize the number of directions and41

thresholds for classification to 158 and 8 respectively, creating vectors of42

length 1264 that are topological signatures for each barley seed. Using43

these vectors, we successfully train a support vector machine to classify44

28 different accessions of barley based on the 3D shape of their grains.45

We observe that combining both traditional and topological descriptors46

classifies barley seeds to their correct accession better than using just47

traditional descriptors alone. This improvement suggests that TDA is48

thus a powerful complement to traditional morphometrics to describe49

comprehensively a multitude of shape nuances which are otherwise not50

picked up. Using TDA we can quantify aspects of phenotype that have51

remained “hidden” without its use, and the ECT opens the possibility of52

accurately reconstructing objects from their topological signatures.53
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1 Introduction54

There is a discrepancy between the information embedded in biological forms55

that we can discern with our senses versus that which we can quantify. Methods56

to comprehensively quantify phenotype are not commensurate with the thor-57

oughness and speed with which genomes can be sequenced. High-throughput58

phenotyping has enabled us to collect large amounds of phenotyping data59

(Andrade-Sanchez et al., 2013; Araus and Cairns, 2014; Tanabata et al., 2012);60

nonetheless, we are not maximizing the information extracted from the data61

we collect.62

One framework for extracting information embedded within data is to consider63

its shape. From a morphological perspective, the form of biological organisms64

is both data and literal shape simultaneously. Landmark-based approaches65

based on Procrustean superimposition (Bookstein, 1997) and Fourier-based66

decomposition of closed outlines (Kuhl and Giardina, 1982; Lestrel, 1997)67

comprise traditional morphometric methods. These approaches measure shape68

comprehensively, but are limited to either a geometric perspective that only69

considers the distances and relative positions of data points to each other or to70

a frequency domain transform of a closed contour. We thus turn to topology,71

the mathematical discipline that studies shape in a more abstract sense.72

Topological Data Analysis (TDA) is a set of tools that arise from the perspective73

that all data has shape and that shape is data (Lum et al., 2013; Munch, 2017).74

TDA treats the data as if made of elementary building blocks as in Figure 1A:75

points, edges, squares, and cubes, referred to as 0-, 1-, 2-, and 3-dimensional76

cells respectively. A collection of cells is referred to as a cubical complex, or77

complex, for short.78
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Cubical complexes are both a natural and consistent way to represent image79

data (Kovalevsky, 1989). Given a grayscale image as shown in Figure 1A, we80

follow a strategy similar to Wagner et al. (2012) to construct a cubical complex:81

A nonzero pixel will correspond to a vertex in our complex. If two pixels are82

adjacent—in the 4-neighborhood sense—we say that there is an edge between83

the corresponding vertices in the complex. If 4 pixels in the image form a 2× 284

square, we will consider a square in our complex between the corresponding 485

vertices. Additionally, for the 3D image case, if 8 voxels—the 3D equivalent of86

pixels—make a 2× 2× 2 cube, we will draw a cube in our complex between the87

corresponding 8 vertices.88

TDA seeks to describe the shape of our data based on the number of relevant89

topological features found in the corresponding complex. For instance, the90

complex in Figure 1A has two distinct, separate pieces colored in blue and91

red respectively, formally referred to as connected components. This complex92

also has 8 edges forming the outline of a square without an actual red block93

filling it—edges thickened for emphasis—this is referred to as a loop. In higher94

dimensions, we could also consider hollow blocks containing voids. We can even95

go a step further and summarize these topological features with a single value96

known as the Euler characteristic, represented by the Greek letter χ, defined97

for voxel-based images as98

χ = #(connected components)−#(loops) + #(voids).99

The Euler characteristic is a topological invariant, that is, it will remain un-100

changed under any smooth transformation applied to our shape. The well-known101

but surprising Euler-Poincaré formula states that χ can be computed easily as102

χ = #(Vertices)−#(Edges) + #(Faces)−#(Cubes).103
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This equivalence can be seen in the cubical complex from Figure 1A, where104

χ = 18 vertices− 19 edges + 2 faces105

= 2 connected components− 1 loop + 0 voids = 1.106
107

The Euler characteristic by itself might be too simple. Nonetheless, we can108

extract more information out of our data-based complex if we think of it as a109

dynamic object that grows in number of vertices, edges, and faces across time.110

As our complex grows, we may observe significant changes in χ. The changes111

in χ can be thought as a topological signature of the shape, referred to as an112

Euler characteristic curve (ECC). The growth of the complex is defined by a113

filter function which assigns a real number value to each voxel. For reasons114

discussed later, we will focus on directional filters which assign to each voxel its115

height as if measured from a fixed direction.116

As an example, consider the cubical complex of a barley seed and the direction117

corresponding to the adaxial-abaxial axis in Figure 1B. Voxels at the top of the118

seed will be assigned the lowest values, while voxels at the bottom will obtain119

the highest values. We then consider 32 equispaced, increasing thresholds120

t1 < t2 < . . . < t32 which define 32 different slices of equal thickness along the121

adaxial-abaxial axis. We start by computing the Euler characteristic of the first122

slice, that is, all the voxels with filter value less than t1. Next we aggregate123

the second slice, which are all the voxels with filter value less than t2, and124

recompute the Euler characteristic. We repeat the procedure for the 32 slices.125

For instance in Figure 1C, we observe that we started with scattered voxels126

which are thought of as many connected components which may explain the127

high Euler characteristic values. As we keep adding slices, we connect most of128

the stray voxels into fewer but larger connected components, and simultaneously,129

we might have created loops as seen in t4 and t6. This merging of connected130
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Figure 1: Extracting topological shape signatures from barley seeds. A. A binary im-

age (left) is treated as a cubical complex (right). This cubical complex has 2 connected

components, 1 loop, 0 voids. The distinct connected components are colored in blue

and red respectively. The loop is emphasized with thicker edges. B. The barley seeds

were aligned so that their proximal-distal, medial-lateral, and adaxial-abaxial axes corre-

sponds to the X, Y, Z-axes in space. C. Example of an Euler Characteristic Curve (ECC)

as we filter the barley seed across the adaxial-abaxial axis (depicted as a solid, green line)

through 32 equispaced thresholds. D. The Euler Characteristic Transform (ECT) consists

of concatenating all the ECCs corresponding to all possible directions. In this example,

we concatenate 3 ECCs corresponding to the X, Y, Z directions.
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components, and formation and closing of loops might explain the fluctuation131

of the Euler characteristic between positive and negative values. Finally, after132

more than half of the slices have been considered, at t14, we observe that no133

new loops are formed, and every new voxel will simply be part of the single134

connected component. Thus, the Euler characteristic remains constant at 1.135

The ECC is precisely the sequence of different Euler characteristic values as we136

add systematically individual slices along the chosen direction.137

To get a better sense of how the Euler characteristic changes overall, we138

can compute several ECCs corresponding to different directional filters. For139

example, in Figure 1D, we choose three directions in total corresponding to the140

proximal-distal, medial-lateral, and adaxial-abaxial axes respectively. Each filter141

produces an individual ECC, which we later concatenate into a unique large142

signal known as the Euler Characteristic Transform (ECT).143

There are two important reasons to use ECT over other TDA techniques.144

First, the ECT is computationally inexpensive, since it is based on successive145

computations of the Euler characteristic, which is simply an alternating sum146

of counts of cells. This inexpensiveness is especially relevant as we are dealing147

with thousands of extremely high-resolution 3D images. Assuming that we have148

already treated the image as a cubical complex, we can compute a single ECC149

in linear time with respect to the number of voxels in the image (Richardson and150

Werman, 2014). We can thus compute the ECT of a 50,000-voxel seed scan151

with 150 directions in less than two seconds on a traditional PC. The second152

reason to use the ECT is its provable invertibility and statistical sufficiency. As153

proved by Turner et al. (2014), and later extended by Curry et al. (2018) and154

Ghrist et al. (2018), if we compute all possible directional filters we would have155

sufficient information to reconstruct the original shape. Moreover, this ECT156

is a sufficient statistic that effectively summarizes all information regarding157
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shape. Although there are infinite possible directional filters, there is ongoing158

research into defining a sufficient finite number of directions such that we can159

effectively reconstruct shapes based solely on their finite ECT (Belton et al.,160

2018; Betthauser, 2018; Curry et al., 2018; Fasy et al., 2019). Nonetheless, a161

computationally efficient reconstruction procedure for large 3D images remains162

elusive.163

Here we show the use of ECTs to correctly describe the shape of barley seeds164

as a proof of concept. We scanned a collection of barley panicles comprising165

28 different accessions with X-ray CT technology at 127 micron resolution.166

These scans were later digitally processed to isolate 3121 individual grains.167

With individual seeds, we quantified their morphology using both traditional and168

topological shape descriptors. To verify the descriptor correctness, we trained a169

support vector machine (SVM) to determine the accession of individual grains170

based on their shape alone. Our experiment shows that SVMs perform better171

whenever topological information is taken into account, which suggests that172

the ECT measures shape that is “hidden” from traditional shape descriptors.173

2 Materials and Methods174

We selected 28 barley accessions with diverse spike morphologies and geographi-175

cal origins for our analysis (Harlan and Martini, 1929, 1936, 1940). In November176

of 2016, seeds from each accession were stratified at 4C on wet paper towels177

for a week, and germinated on the bench at room temperature. Four day old178

seedlings were transferred into pots in triplicate and arranged in a completely179

randomized design in a greenhouse. Day length was extended throughout the180

experiment using artificial lighting (minimum 16h light / 8h dark). After the181

9
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Figure 2: Barley image processing. The morphology measurements were extracted from

3D voxel-based images of the barley panicles. Before any analysis was done, the A. raw

X-ray CT scans of the panicles had their B. densities normalized, C. air and other de-

bris removed, and awns pruned. D. After automating these image processing steps, we

could finally work with a large collection of clean, 3D panicles. E. An extra digital step

segmented the individual seeds for each barley spike. F. Example of incomplete or bro-

ken seeds which were removed from the data set. G. The seeds were aligned according

to their principal components, which allowed us to H. measure a number of traditional

shape descriptors. I. The damaged seeds were initially identified as outliers of the allome-

try plots. J. The total number of clean and defective seeds measured from each accession.

Defective seeds were not concentrated in a particular accession.

10

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 28, 2021. ; https://doi.org/10.1101/2021.03.27.437348doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.27.437348
http://creativecommons.org/licenses/by-nc/4.0/


9 Parallels
8 Meridians:

74 directions

9 Parallels
11 Meridians:

101 directions

13 Parallels
12 Meridians:

158 directions

19 Parallels
12 Meridians:

230 directions

Figure 3: Directions chosen to compute the ECT. The sphere was split into a equispaced

fixed number of parallels and meridians in each case. The directions were the taken from

the intersections.

plants reached maturity and dried, a single spike was collected from each repli-182

cate for scanning at Michigan State University. The scans were produced using183

the North Star Imaging X3000 system and the included efX software, with 720184

radiographs per scan. The X-ray source was set to a voltage of 75 kV, current185

of 100 µA, and focal spot length of 0 microns. The 3D reconstruction of the186

spikes was computed with the efX-CT software, obtaining a final voxel size of187

127 microns. The intensity values for all raw reconstructions was standardized,188

the air and debris thresholded out, and awns digitally pruned—Figures 2A-2D.189

We digitally isolated all the seeds as in Figure 2E, and thus obtained a collection190

of 3121 seeds in total. The details of varieties and their number of seeds can191

be found in the supplement Table 1. Due to the large volume of data, we used192

python to automate the image processing pipeline for all panicles and grains.193

To make the comparison of different directional filters comparable across seeds,194

all the seeds were aligned with respect to their first three principal components.195

This alignment corresponds to the proximal-distal, medial-lateral, and adaxial-196

abaxial axes respectively as depicted in Figures 1B or 2G. With this alignment197

we were able to measure the length, width, heights, surface area and volume of198

each seed as depicted in Figure 2H. We also computed the convex hull for each199

seed and measure its surface area and volume. Finally, we computed the ratios200
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Table 1: Sample size of seed scans used for each individual accession. The seeds come

from a three panicles per accession setup. 3121 seeds were used in total.

Accession num Accession num Accession num

Algerian 144 Golden Pheasant 89 Minia 112

Alpha 90 Good Delta 126 Multan 50

Arequipa 110 Han River 71 Oderbrucker 194

Atlas 132 Hannchen 89 Orel 74

California Mariout 189 Horn 98 Palmella Blue 59

Club Mariout 173 Lion 116 Sandrel 96

Everest 128 Lyallpur 115 Trebi 119

Flynn 78 Maison Carree 146 White Smyrna 58

Glabron 114 Manchuria 167 Wisconsin Winter 25

Meloy 159

of seed surface area and volume to its convex hull surface area and volume201

respectively. In total we measured 11 different traditional shape descriptors.202

Outliers in the allometry plots helped us identify and remove damaged seeds,203

as in Figures 2I and 2J.204

As a proof of concept, we explored how topological descriptors varied as we205

varied both the number of different directions and the number of uniformly206

spaced thresholds. In total, for every seed we computed the ECT considering207

74, 101, 158, and 230 different directions. We emphasized directions toward208

the seed’s cleft, which correspond to directions close to both north and south209

poles. Refer to Figure 3. For each direction, we produced ECCs with 4, 8, 16,210

32, and 64 thresholds.211

For every seed we computed a very high dimensional vector of topological212

information, usually above 1000 dimensions. In general, high-dimensional vectors213
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tend to produce distorted prediction and regression results (Köppen, 2000), so214

we sought to reduce the topological information to just a few dimensions. As215

proposed originally by Schölkopf et al. (1998), we employed a non-linear kernel216

principal component analysis (KPCA) with a Laplacian kernel to aggressively217

reduce the ECT vectors to just 12 dimensions, usually less than 1% of the218

original ECT dimension. Hereafter, by topological descriptors we will refer to219

the ECT vectors after being reduced in dimension with KPCA.220

We then sought to test the descriptiveness of both traditional and topological221

measures. To this end, we trained three non-linear support vector machines222

(SVM) (Burges, 1998) to characterize and predict the seeds from 28 differ-223

ent accessions based on three different collection of descriptors: traditional,224

topological, and combining both traditional and topological descriptors. In225

every case, the descriptors were centered and scaled to variance 1 prior to226

classification. Given that SVM is a supervised learning method, we partitioned227

our data into training and testing sets. In our case, we randomly sampled 80%228

of the seeds from every accession as our training data set. The remaining 20%229

was used to test the accuracy of our prediction model. We repeated this SVM230

setup 100 times and considered the average accuracy and confusion matrices231

as final results.232

3 Results233

Using either exclusively traditional or topological shape descriptors produces a234

comparable classification results. With either collection of descriptors as seen235

in Table 2, the machine is able to correctly determine the grain variety roughly236

55% of the time. For comparison, by simply guessing randomly the variety, we237
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Figure 4: Classification results for different parameters and shape descriptors. A. The

ECT was computed by concatenating 158 different directional filters as in Figure 3 with

8 thresholds each. This choice is due to the fact that increasing either the number of di-

rections or thresholds did not improve classification scores when using combined shape

descriptors. B. Combined shape descriptors in general outperform the separate use of

traditional or topological shape descriptors. Combined shape descriptors produce the

best precision, recall, and F1 classification scores for most of the barley accessions.
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Shape descriptors
No. of Scores (weighted average ± standard deviation)

descriptors Precision Recall F1

Traditional 11 0.57± 0.058 0.56± 0.019 0.55± 0.019

Topological (ECT + KPCA) 12 0.51± 0.063 0.51± 0.020 0.50± 0.020

Combined (Trad. + Topo.) 23 0.72± 0.055 0.71± 0.018 0.71± 0.018

Table 2: SVM classification accuracy of barley seeds from 28 different founding lines after

100 randomized training and testing sets. The ECT was computed with 158 directions

(as in Figure 3) and 8 thresholds. Since we are in a multi-class classification setting we

first computed the precision, recall, and F1 scores for each founding line. Later, we com-

puted the weighted average for each score, where the weight depended on the number

of test seeds for each of the barley lines. Observe that the use of combined descriptors

outperforms the use of traditional descriptors.

Assuming t distribution Assuming normal distribution

Traditional Topological Traditonal Topological

Topological 8.6× 10−3 ∗ Topological 6.7× 10−5 ∗

Combined < 2× 10−16 < 2× 10−16 Combined < 2× 10−16 < 2× 10−16

Table 3: Small Quade post-hoc p-values (with Bonferroni correction) suggest that differ-

ent descriptors produce statistically different SVM results.

would expect to be correct just 1/28× 100 ≈ 4% of the time. Thus, both sets238

of descriptors do capture important morphological patterns that can be picked239

up by a computer. Moreover, our overall prediction accuracy increases beyond240

70% if we use both traditional and topological measures to characterize seed241

shape. This is even more striking if we consider that we aggressively reduced242

the dimension of the ECTs. A Friedman test (Friedman, 1937) among the243

three accuracy results produces a p-value of 8.1× 10−8, which suggests that244

the three SVM classifiers are statistically different. Since we are comparing only245

three classifiers, we can rely better on a Quade post-hoc pairwise test (Quade,246

1979) as suggested in (Conover, 1998). The p-values are reported in Table 3.247
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The results presented on Tables 2 and 3 are based on an ECT computed with248

158 directions (refer to Figure 3) and 8 thresholds. As shown in Figure 4A, We249

chose this parameters on the observation that increasing either the number of250

thresholds or directions did not improve classification results, and potentially251

contributed to diminishing returns.252

4 Discussion253

Traditional morphometrics has been used on ancient cereal grains to reveal254

fundamental trends in morphological changes across space and time (Bouby,255

2001; Coster and Field, 2015). Historical evidence shows that barley seeds256

became smaller as the crop moved from Mediterranean climates to Northwest257

Europe to account for colder temperatures and higher sunlight variance, shedding258

some insight on the timeline of barley domestication in Central Asia (Motuzaite259

Matuzeviciute et al., 2018). Similarly, grains became rounder and the spikes260

became more compact as they moved to higher altitude sites in Nepal (Tanno261

and Willcox, 2012). Differences become more subtle if we compare accessions262

that originated from similar regions and time periods. Geometric Morphometrics263

(GMM) has provided a more detailed characterization of the grains. For264

example, GMM can successfully tell apart barley grains from einkorn (Triticum265

monococcum) and emmer (Triticum dicoccum) grains (Bonhomme et al., 2017);266

it can be used to distinguish two-row vs six-row barley seeds (Ros et al., 2014);267

and it can establish unique morphological characteristics of land races to deduce268

their possible historical origins (Wallace et al., 2019).269

Morphometrics has a number of drawbacks in our proposed X-ray scan setting.270

GMM may have trouble if there are no clear homologous points and currently271
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most of the discipline has focused on 2D images rather than large 3D X-272

ray CT scans (Dryden and Mardia, 2016). We thus turn to topology. In273

recent years, TDA has produced promising results in diverse biological problems,274

like histological image analysis (Qaiser et al., 2019), viral phylogenetic trees275

description (Chan et al., 2013), and active-binding sites identification in proteins276

(Kovacev-Nikolic et al., 2016). In plant biology, the Euler characteristic has277

been used successfully used to define the morphospace of more than 180,000278

leaves from seed plants (Li et al., 2018), and to characterize the shape of apple279

leaves (Migicovsky et al., 2018) and the 3D structure of grapevine inflorescences280

(Li et al., 2019).281

The Euler characteristic provides important shape information for barley seeds282

as well. We observe that the topological shape descriptors provide an overall283

similar characterization performance than the traditional shape descriptors. As284

seen from Table 2, both kinds of shape descriptors provide similar precision and285

recall scores. Notice however that some specific barley varieties are more easily286

distinguishable with the topological lens but not with traditional measures, and287

vice-versa. For instance if we focus on the F1 scores in Figure 4B, Glabron288

and Alpha report considerably higher classification accuracies whenever using289

topological information compared to using only traditional measures. Moreover,290

some lines such as Club Mariout and Oderbrucker are better characterized291

using exclusively topological features, since combining traditional measures just292

muddles classification results. On the other hand, our topological descriptors293

perform poorly whenever we try to distinguish lines such as Palmella Blue294

and Hannchen, as these lines seem much better characterized by traditional295

measures alone. Finally, some lines like Wisconsin Winter or Flynn reported296

poor classification results whenever we limited ourselves to just topological or297

traditional measures; however, our classification accuracy improved dramatically298
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as we combined both descriptors.299

A more careful exploration on the directions used to compute the ECT could300

reveal more shape information and improve the classification results described301

above. Of particular note, we could do a more exhaustive ECT analysis and302

observe if there is a particular directional filter that contributes the most303

morphological information. A related question is to explore how the ECT and304

subsequent results vary if we pick randomly distributed directions—or according305

to any other probability distribution—instead of regularly distributed ones as306

in Figure 3. We can also do a more systematic experimentation with different307

dimension reduction algorithms, and classification techniques afterward, in order308

to improve the results presented above.309

The Euler characteristic is a simple yet powerful way to reveal features not310

readily visible to the naked eye. There is “hidden” morphological informa-311

tion that traditional and geometric morphometric methods are missing. The312

Euler characteristic, and Topological Data Analysis in general, can be readily313

computed from any given image data, which makes it an extremely versatile314

tool to use in a vast number of biology-related applications. TDA provides a315

comprehensive framework to detect and compare these important morphological316

nuances for different barley accessions, nuances that can be distinguished by317

just analyzing the external shape structure of individual grains rather than318

working with the barley spike as a whole. These “hidden” shape nuances at the319

seed level, if properly detected, can provide surprisingly enough information to320

characterize specific accessions. Our results suggest a new exciting path, driven321

mainly by morphological information, to explore further the phenotype-genotype322

relationship in barley and many more plant species.323
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5 Software and data availability324

All of our code is available at the https://github.com/amezqui3/demeter/325

repository. This includes the image processing pipeline to clean the raw scans326

and segment the seeds (python), the computation of the ECTs (python),327

and the SVM classification and analysis (R). A collection of jupyter notebook328

tutorials is also provided in order to ease the usage and understanding of the329

different components of the data processing and data analyzing pipelines.330
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