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Data

Persistent topo-
logical space

Persistent
vector space

Persistent homology PHn

Vietoris-Rips VR• Hn

Ling Zhou (OSU) Persistent Homotopy of Metric Spaces January 15, 2021 3 / 24



Stability of Persistent Homology

dGH: the Gromov-Hausdorff distance of metric spaces, which is
NP-hard to compute, [Schmiedl, 2017];

dI: the interleaving distance of persistent vector spaces, computable
in polynomial time.

Theorem (Stability, [Chazal et al., 2014])

Let (X , dX ) and (Y , dY ) be two metric spaces. Then, for any n ∈ Z≥0,

dI(PHn(X ),PHn(Y )) ≤ 2 · dGH(X ,Y ).
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Homotopy Stronger than Homology

Example (S1 × S1 vs. S1 ∨ S2 ∨ S1)

Figure 1: S1 × S1 (left) and S1 ∨ S2 ∨ S1 (right).

Hn

(
S1 × S1

) ∼= Hn

(
S1 ∨ S2 ∨ S1

)
, for any n ∈ N.

π1

(
S1 × S1

) ∼= Z× Z 6∼=Z ∗ Z ∼= π1

(
S1 ∨ S2 ∨ S1

)
.
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Discrete Fundamental Group

Definition (Discrete fundamental groups [Berestovskii, Plaut &
Wilkins])

Let Lt(X , x0) = {t-loops based at x0}. The discrete fundamental group
at scale t is

πt1(X , x0) := Lt(X , x0)/ ∼t
1 .
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Persistent Fundamental Group

Definition (Persistent fundamental group)

The persistent fundamental group of (X , x0) is the functor

PΠ•1(X , x0) : (R>0,≤)→ Grp

t 7→ πt1(X , x0)

(t ≤ t ′) 7→
(
πt1(X , x0)→ πt

′
1 (X , x0)

)
.

Example

Let S1 be the unit circle. Then PΠ1(S1) is

0 2π
3

t

Z
0
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Stability of PΠn

Theorem (Stability)

dI (PΠn(X ),PΠn(Y )) ≤ 2 · dGH(X ,Y ).
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Stability of PΠn

Theorem (Stability)

dI (PH1(X ),PH1(Y )) ≤ dI (PΠ1(X ),PΠ1(Y )) ≤ 2 · dGH(X ,Y ).
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Example (S1 × S1 vs. S1 ∨ S2 ∨ S1)

Figure 2: S1 × S1 (left) and S1 ∨ S2 ∨ S1 (right).

Let a := 1
2 arccos(−1

3 ).

PHn |(0,2a)

(
S1 × S1

)
= PHn |(0,2a)

(
S1 ∨ S1 ∨ S2

)
, ∀n;

PΠ1 |(0,2a)(S1 × S1) 6∼= PΠ1 |(0,2a)(S1 ∨ S1 ∨ S2).

And the stability of PΠ1 implies

0.96 ≈ 1
2 · a ≤ dGH

(
S1 ∨ S1 ∨ S2, S1 × S1

)
.
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Dendrogram and Metric on π1(X )

Theorem ([Mémoli and Zhou, 2019])

Let X satisfy some fairly mild assumptions (geodesic and semi-locally
simply connected). Associated to PΠ1(X ), there is a dendrogram θπ1(X )

over π1(X ) given by

θπ1(X )(t) := πt1(X ),∀t > 0.

In addition, the dendrogram induces an ultrametric µθπ1(X )
on π1(X ).
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Let X satisfy some fairly mild assumptions (geodesic and semi-locally
simply connected). Associated to PΠ1(X ), there is a dendrogram θπ1(X )

over π1(X ) given by

θπ1(X )(t) := πt1(X ),∀t > 0.

In addition, the dendrogram induces an ultrametric µθπ1(X )
on π1(X ).

Example

Let Y be simply-connected, i.e. π1(Y ) = 0. Then PΠ1(Y ) = 0.
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Dendrogram and Metric on π1(X )

Theorem ([Mémoli and Zhou, 2019])

Let X satisfy some fairly mild assumptions (geodesic and semi-locally
simply connected). Associated to PΠ1(X ), there is a dendrogram θπ1(X )

over π1(X ) given by

θπ1(X )(t) := πt1(X ),∀t > 0.

In addition, the dendrogram induces an ultrametric µθπ1(X )
on π1(X ).

Theorem (dGH-stability for θπ1(•))

If compact geodesic metric spaces X and Y are s.l.s.c., then

dGH

((
π1(X ), µθπ1(X )

)
,
(
π1(Y ), µθπ1(Y )

))
≤ 2 · dGH(X ,Y ).
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Example (Dendrogram over π1(S1))

Associated to PΠ1(S1) we have a dendrogram over π1(S1) ∼= Z:

-3

-2

-1

0

1

2

3

π
1
(S

1
)

2π
3

Figure 3: The y -axis represents elements of π1(S1) = Zγ, for γ a generator of S1.
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Example (Dendrogram over π1(S1(r1)× S1(r2)))

For 0 < r1 ≤ r2, associated to PΠ1

(
S1(r1)× S1(r2)

)
we have a

dendrogram:

-1

0

1

2π
3 r1

2π
3 r2

π
1
(S

1
(r

1
)
×

S1
(r

2
))

Figure 4: The y -axis represents elements of Zγ1 × Zγ2, where γ1 and γ2 are
generators of π1(S1(r1)) and π1(S1(r2)), respectively.

Ling Zhou (OSU) Persistent Homotopy of Metric Spaces January 15, 2021 15 / 24



[Gromov, 1999]: How simply-connected is a space?
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Persistent Rational Homotopy

Persistent homotopy is difficult to compute in general. But there is hope
to compute its rationalization.

Rational homotopy groups of spheres ([Serre, 1951]):

πn(S2k−1)⊗Q ∼=

{
Q, n = 2k − 1,

0, otherwise,

the same as Hn(S2k−1), and

πn(S2k)⊗Q ∼=

{
Q, n = 2k , 4k − 1,

0. otherwise.
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Persistent Rational Homotopy

Define PΠn(X )⊗Q to be the composition:

(R>0,≤)
PΠn(X )−−−−→ Ab Grp

−⊗Q−−−→ Vec .

With the computation of the homotopy type of VR≤r (S1) from
[Adamaszek and Adams, 2017], we obtain

Example

If n = 4k − 1 for some k ∈ N,

PΠ≤4k−1

(
S1
)
⊗Q ∼= PH≤4k−1

(
S1
)
⊕Q×∞

[
2k

4k+1 ,
2k

4k+1

]
.

Otherwise, PΠ≤n
(
S1
)
⊗Q ∼= PH≤n

(
S1
)
.
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Proposition

Let X and Y be compact metric spaces. Then for each n ∈ Z≥2,

dI (PΠn(X )⊗Z Q,PΠn(Y )⊗Z Q) ≤ 2 · dGH(X ,Y ).

When PΠ1(X ),PΠ1(Y ) ∈ PAb, we also have

dI (PΠ1(X )⊗Z Q,PΠ1(Y )⊗Z Q) ≤ 2 · dGH(X ,Y ).
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Future Work

Algorithms to compute persistent rational homotopy groups, using
Sullivan minimal models, [Peterson, 2015];

Construct PΠn using discrete homotopy groups;

Compute persistent fundamental groups with some restrictions on the
data, [Brendel et al., 2015].
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Thank You!

Ling Zhou (OSU) Persistent Homotopy of Metric Spaces January 15, 2021 22 / 24



Let t > 0. The Vietoris–Rips complex VRt(X ) of X is the simplicial
complex with vertex set X , where

a finite subset σ ⊂ X is a face of VRt(X )⇔ diam(σ) < t.

0 1 2

t
1

2 2
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Example (S1)

From [Adamaszek and Adams, 2017]:

VR<ε(S1) ' S2k+1, if ε ∈
(

k
2k+1 ,

k+1
2k+3

]
for some k ∈ N.

For k
2k+1 < ε ≤ ε′ ≤ k+1

2k+3 , VR<ε(S1)
'
↪−→ VR<ε′(S1).

0 1
3

2
5

3
7

4
9

S1 S3 S5

PHVR
n (S1) ∼=

Z
(

k−1
2k−1 ,

k
2k+1

]
, if n = 2k − 1,

0, if n = 2k.

PΠVR
1 (S1) ∼= Z

(
0, 1

3

] ∼= PΠ1(S1) and PΠVR
3 (S1) ∼= Z

(
1
3 ,

2
5

]
.

Question: how to compute PΠVR
n (S1) for n large?
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