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Abstract: The present contribution investigates multivariate bootstrap procedures
for general stabilizing statistics, with specific application to topological data analysis.
Existing limit theorems for topological statistics prove difficult to use in practice for
the construction of confidence intervals, motivating the use of the bootstrap in this
capacity. However, the standard nonparametric bootstrap does not directly provide
for asymptotically valid confidence intervals in some situations. A smoothed boot-
strap procedure, instead, is shown to give consistent estimation in these settings. The
present work relates to other general results in the area of stabilizing statistics, in-
cluding central limit theorems for functionals of Poisson and Binomial processes in the
critical regime. Specific statistics considered include the persistent Betti numbers of
Čech and Vietoris-Rips complexes over point sets in Rd, along with Euler character-
istics, and the total edge length of the k-nearest neighbor graph. Special emphasis is
made throughout to weakening the necessary conditions needed to establish bootstrap
consistency. In particular, the assumption of a continuous underlying density is not
required. A simulation study is provided to assess the performance of the smoothed
bootstrap for finite sample sizes, and the method is further applied to the cosmic
web dataset from the Sloan Digital Sky Survey (SDSS). Source code is available at
github.com/btroycraft/stabilizing statistics bootstrap.
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1. Introduction

In recent years, a multitude of topological statistics have been developed to describe and an-
alyze the structure of data, achieving notable success. These methods have seen application
in astrophysics [1, 41, 42, 43], cancer genomics [3, 21, 11], medical imaging [18], materials
science [29], fluid dynamics [30] and chemistry [52], and other wide ranging fields.

The use of simplicial complexes to summarize the geometric and topological properties
of data culminates in the techniques of persistent homology. Summary statistics based on
persistent homology, persistent Betti numbers, persistence diagrams, and derivatives thereof
effectively extract essential topological properties from point cloud data. A broad introduc-
tion to the methods of topological data analysis can be found in [51, 15].

While the use of such statistics has seen wide success, very little is currently known about
the statistical properties of these topological summaries. An initial attempt at statistical
analysis using persistent homology can be seen in [10], with the later introduction of persis-
tence landscapes in [9]. Likewise, central limit theorems have been developed for persistence
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landscapes [13], Betti numbers [54] and persistent Betti numbers [27, 31] under a variety
of asymptotic settings. However, the form of these results is insufficient to provide for valid
confidence intervals.

In the construction of asymptotically valid confidence intervals, subsampling and boot-
strap estimation have proven successful. In [23], various techniques are given for construct-
ing confidence sets for persistence diagrams and derived statistics, including persistence
diagrams generated from sublevel sets of the density function, as well as for the Čech and
Vietoris-Rips complexes of data constrained to a manifold embedded in Rd. In [13, 14],
bootstrap consistency is established very generally for persistence landscapes drawn from
independently generated point clouds in Rd, assuming that the number of independent sam-
ples is allowed to grow.

However, even with these recent developments, the available techniques for constructing
confidence sets using topological statistics remain severely limited. The bootstrap has proven
one of the only effective tools, however the theoretical properties of bootstrap estimation
applied to topological statistics are not well understood. For the large-sample asymptotic
regime in particular, results are largely nonexistent.

The goal of this work is to provide the foundational theory for the bootstrap in this
area. Here the validity of the bootstrap in the multivariate setting is established, a key step
towards an eventual process-level result. However, the latter remains a significant technical
hurdle. While motivated primarily by application to topological data analysis, the results
presented here apply much more generally over a class of stabilizing statistics. For an addi-
tional application, we show convergence for the bootstrap applied to the total edge length
of the k-nearest neighbor graph.

We also analyze the large-sample asymptotic properties of the bootstrap applied to the
Čech and Vietoris-Rips complexes directly, where the underlying point cloud is a sample
drawn from a common distribution on Rd. In particular, we will show that the standard
nonparametric bootstrap can fail to provide asymptotically valid confidence intervals directly
in some cases. Via a smoothed bootstrap, however, we will construct multivariate confidence
intervals for the mean persistent Betti number, which lie in bijection with the corresponding
persistence diagram.

As defined in [38], a statistic stabilizes if the change in the function value induced by ad-
dition of new points to the underlying sample is at most locally determined. Applications of
stabilization have allowed for the development of central limit theorems for several topolog-
ical statistics. [54] show that Betti numbers exhibit the stabilization property, and provide
a central limit theorem for Betti numbers derived from a homogenous Poisson process with
unit intensity. [27] considers persistent Betti numbers in the homogenous Poisson process
case with arbitrary intensity. Most recently [31] established multivariate central limit the-
orems for persistent Betti numbers with an underlying point cloud coming from either a
nonhomogenous Poisson or binomial process. For the results in the present contribution, we
draw significant inspiration from this most recent work.

An application of our general consistency result is made to the persistent Betti num-
bers of a class of distance-based simplicial complexes, including the Čech and Vietoris-Rips
complexes. Throughout this work, a special focus is given towards weakening the necessary
assumptions compared to previous results. Specifically, the theorems presented here apply
for distributions with unbounded support, unbounded density, and possible discontinuities.
We assume only a bound for the Lp-norm of the underlying sampling density.

For the first half of this paper, we focus on the theory of bootstrap estimation applied to
stabilizing statistics. In Section 2 we will introduce the concept of stabilization and estab-
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lish intermediate technical results in this context. We then present our general bootstrap
consistency theorem.

In the second half, we introduce the main topological and geometric statistics of inter-
est, applying the theory presented in the previous sections. In Section 3 we connect the
general theory to the specific case of persistent homology and related statistics. Towards
this end, we give a short introduction to simplicial complexes and persistent homology.
In Section 4, the stabilization properties of persistent Betti numbers are analyzed, along
with the Euler characteristic, for general classes of distance-based simplicial complexes.
We establish bootstrap consistency in the large-sample limit for each of these statistics,
as well as for the total edge length of the k-nearest neighbor graph. In Section 5 we pro-
vide several simulations demonstrating the finite-sample properties of the smoothed boot-
strap applied to persistent Betti numbers. Finally, Section 6 illustrates the utility of the
smoothed bootstrap with an application to a cosmic web dataset from the Sloan Dig-
ital Sky Survey (SDSS) [5]. Source code for the computational sections is available at
github.com/btroycraft/stabilizing statistics bootstrap [44].

Appendix A gives an investigation of several altered problem settings in which precise
stabilization properties may be derived. The proofs for all results can be found in Ap-
pendix B. Functionals considered include the “B-bounded” persistent Betti numbers and
the “q-truncated” Euler characteristic.

2. Stabilizing Statistics

2.1. Central Limit Theorems for Stabilizing Statistics

Before proving bootstrap convergence, we give a brief overview of the existing work regarding
stabilizing statistics. For the precise definitions used throughout this paper, see Section 2.2.

In the seminal work of [38], the chief objects of study are real valued functionals applied
over point sets in Rd. It is here that a stabilization property was first defined, and used to
show central limit theorems for certain types of geometric functionals, including the length
of the k-nearest neighbor graph and the number of edges in the sphere of influence graph.
This initial work distilled two properties key to showing central limit theorems for geometric
functionals. First is the stabilization property, and second is a moment bound. In short, we
say that a functional ψ stabilizes if the cost of adding an additional point, or a set of points,
to the point cloud varies only on a bounded region. Specific definitions differ by context.

In [38], the authors distinguish between two data generating regimes. First, results are
shown for a homogenous Poisson process over Rd. Alternatively, a binomial process is consid-
ered, being equivalent to a sample of fixed size from an appropriate probability distribution.
Here, the functional under consideration is restricted to a bounded domain Bn of volume
n, where n is allowed to increase. In this initial work, only homogenous Poisson processes
and uniform binomial sampling are considered. In [39], a similar framework is used to estab-
lish laws of large numbers for graph-based functionals, including the number of connected
components in the minimum spanning tree. Further quantitative refinements on the general
central limit theorems for stabilizing statistics are shown in [32], [33], and [34].

As pertains to topological statistics, an initial central limit theorem for Betti numbers
(see Section 3.2 for definitions) was shown in [54], establishing so-called weak stabilization
for Betti numbers in the homogenous Poisson and uniform Binomial sampling settings.
There an alternative set-up is being used where the domain is kept fixed, while the filtration
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parameter is decreasing to zero. A similar result for persistent Betti numbers is given in
[27].

Finally, [31] establishes multivariate central limit theorems for persistent Betti numbers
under a flexible sampling setting. Here, a nonhomogeneous Poisson or binomial process is
generated again over a growing domain with fixed filtration radii.

With these central limit theorem results, the stabilization property plays a central role
in understanding the asymptotic behavior for wide classes of geometric and topological
functionals. Unfortunately, as a reoccurring trend, explicit forms for the asymptotic normal
distributions are unavailable or computationally intractable. In this work it is shown how a
smoothed bootstrap procedure allows for consistent estimation of these inaccessible limiting
distributions, and thus for any subsequent inference derived therefrom.

Further, the bootstrap convergence results shown in this paper apply even more broadly,
given that the necessary assumptions are much weaker than normally used to establish
central limit theorems. To the best of our knowledge, it is not known whether there exist
stabilizing statistics which exhibit a non-normal limit, but our convergence results apply
equally for any distributional limit.

2.2. Stabilization

Here, we extend and rephrase existing definitions found in [38], [39], [54], and [31] to provide
a more general and consistent statistical framework. Let X

(
Rd
)

denote the space consisting
of multisets drawn from Rd with no accumulation points, with the further restriction that
no point in a given multiset may be counted more than finitely often. Any locally-finite
point process on Rd can be represented as a random element of X

(
Rd
)
. Let X̃

(
Rd
)
⊂

X
(
Rd
)

contain the finite multisets drawn from Rd and ψ : X̃
(
Rd
)
→ R be a measurable

function. Furthermore, for S, T ∈ X̃
(
Rd
)

define the addition cost of T to S as D (S;ψ, T ) :=
ψ (S ∪ T )−ψ (S). When T = {z} consists of a single point, we call Dz (S;ψ) := D (S;ψ, {z})
an add-one cost or the add-z cost.

Broadly, we say that ψ stabilizes if the addition cost of a given T varies only on a
bounded region. In the preceding literature, the terms “strong” and “weak” stabilization
are very often used, with precise definitions changing based on circumstance. In the interest
of providing more explanatory and specific terminology, we propose the following definitions.

Seen below, almost-sure and locally-determined almost-sure stabilization (see Defini-
tions 2.4 and 2.5) correspond, respectively, to Definitions 3.1 and 2.1 in [38]. Here we have
generalized by accounting for possible measurability issues, however the definitions are es-
sentially equivalent. Let Bz (r) denote the closed Euclidean ball centered at z ∈ Rd with
radius r. For convenience, the dependence on ψ and T is implicit in each of the following.

Definition 2.1 (Terminal Addition Cost). D∞ : X
(
Rd
)
→ R is a terminal addition cost

centered at z ∈ Rd if D∞ (S) = liml→∞D (S ∩Bz (l)) for any S ∈ X
(
Rd
)

such that the
limit exists.

For a finite multiset S ∈ X̃
(
Rd
)
, the terminal addition cost centered at z ∈ Rd is

D∞ (S) = D (S), because no further changes to the addition cost may occur once S∩Bz (a)
contains all of S. This does not hold for infinite multisets, motivating a separate definition.
In the special case where T = {z} is a singleton at the centerpoint, the notation D∞ = D∞z
may be used, and will be seen throughout the remaining sections of the paper.
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Definition 2.2 (Stabilization in Probability). For S a point process taking value in X
(
Rd
)
,

ψ stabilizes on S in probability if there exists a center point z ∈ Rd and a terminal addition
cost D∞ for ψ such that

lim
l→∞

P∗ [D (S ∩Bz (l)) 6= D∞ (S)] = 0. (2.1)

Here P∗ denotes the outer probability of a set. Stabilization is said to occur in probability

because, for any sequence of non-negative radii (li)i∈N such that li →∞, D (S ∩Bz (li))
p→

D∞ (S) whenever both quantities are measurable. D∞ is unique up to a null set in this case.
Stabilization in probability is difficult to show directly for many functions of interest. As
such, we have the following:

Definition 2.3 (Radius of Stabilization). ρ : X
(
Rd
)
→ [0,∞] is a radius of stabilization

for ψ centered at z ∈ Rd if, for any S ∈ X
(
Rd
)

and l ∈ R such that ρ (S) ≤ l <∞,

D (S ∩Bz (l)) = D (S ∩Bz (ρ (S))) . (2.2)

D∞ (S) := D (S ∩Bz (ρ (S))) is a valid terminal addition cost. In the case where
liml→∞D (S ∩Bz (l)) does not exist, ρ (S) =∞ necessarily, with the stabilization criterion
satisfied vacuously. As with the terminal addition cost, when T = {z} we denote ρ = ρz.

In general, for any ψ there exists a unique minimal radius of stabilization, defined as the
pointwise minimum over all such radii sharing the same centerpoint. This minimum exists
because ψ (S ∩Bz (l)) is piecewise constant in 0 ≤ l <∞, changing value only when a new
point of S is added, and because S has no accumulation points.

Definition 2.4 (Stabilization Almost Surely). For S a point process taking value in X
(
Rd
)
,

ψ stabilizes on S almost surely if there exists a radius of stabilization ρ : X
(
Rd
)
→ [0,∞]

for ψ centered at z ∈ Rd such that

lim
L→∞

P∗ [ρ (S) > L] = 0. (2.3)

Mirroring our previous terminology, we say stabilization occurs almost surely because, for
any sequence of nonnegative radii (li)i∈N such that li → ∞, D (S ∩Bz (li))

a.s.→ D∞ (S) =
D (S ∩Bz (ρ (S))) whenever both quantities are measurable. Here we use outer probability,
because a radius of stabilization may not be a measurable function, specifically considering
the unique minimal radius. Almost sure stabilization implies stabilization in probability, as
shown in the following.

Proposition 2.1. For S a simple point process taking values in X
(
Rd
)
, let ψ stabilize on

S almost surely. Then ψ stabilizes on S in probability.

For our proof techniques, it is often necessary to compare the stabilization properties
of a function over a range of related point processes. For example, corresponding binomial,
Poisson, and Cox processes can be shown to have essentially equivalent local properties, while
differing globally. As defined in Definition 2.3, a given radius of stabilization could feasibly
show completely different behavior on each process type. This motivates the following:

Definition 2.5 (Locally Determined Radius of Stabilization). The radius of stabilization
ρ centered at z ∈ Rd is locally determined if for any S, T ∈ X

(
Rd
)

T ∩Bz (ρ (S)) = S ∩Bz (ρ (S)) =⇒ ρ (T ) = ρ (S) .
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With the local-determination criterion from Definition 2.5, we can assure that stabiliza-
tion must occur simultaneously on any two point processes which are locally equivalent. As
in the non-locally-determined case, there exists a unique minimal locally-determined radius
of stabilization:

Proposition 2.2. For R the space of locally-determined radii of stabilization for ψ centered
at z ∈ Rd, let ρ∗ : X

(
Rd
)
→ [0,∞] such that ρ∗ (S) = infρ∈R ρ (S). Then ρ∗ is a locally

determined radius of stabilization for ψ centered at z.

2.3. Technical Results

In all of the following, P
(
Rd
)

denotes the set of probability distributions over Rd. Y1, ..., Yn
iid∼

G is a sample from G ∈ P
(
Rd
)

and Y ′ ∼ G an independent copy. Let Yn = {Yi}ni=1 be

the induced multiset. This definition may be simply denoted by Yn := {Yi}ni=1
iid∼ G. For a

measurable function ψ : X̃
(
Rd
)
→ R, define the following conditions:

(E1) For a given C ⊆ P
(
Rd
)

and some a > 2, there exists Ea <∞ such that

sup
G∈C

sup
n∈N

E
[∣∣ψ ( d√n (Yn ∪ {Y ′})

)
− ψ

(
d
√
nYn

)∣∣a] ≤ Ea. (2.4)

(E2) For some a > 2 and R > 0, there exist Ua > 0 and ua > 1 satisfying the following
property: For any S ∈ X̃

(
Rd
)

and y ∈ Rd,

|ψ (S ∪ {y})− ψ (S)|a ≤ Ua (1 + # {S ∩By (R)}ua) . (2.5)

(E1) requires a moment bound that holds uniformly in the sample size and distribution
G ∈ C. Clearly, if (E1) is satisfied for C, it is also satisfied for any subset of C. In the
context of the topological statistics considered in this work, (E1) is primarily useful for
proof purposes, and is mainly established via (E2) (See Lemma 2.3). However, as will be
seen with the case of the k-nearest neighbor graph, Corollary 4.6, there exist useful statistics
which do not conform to (E2), and the more general condition must be used. (E1) is related
to the “uniform bounded moments” condition, Definition 2.2 in [38]. Our version has been
suitably generalized, the original definition considering only a = 4. Let Cp,M

(
Rd
)

denote

the class of probability distributions G ∈ P
(
Rd
)

admitting a density g such that ‖g‖p ≤M .
We have the following:

Lemma 2.3. For p > 2, let ψ satisfy (E2) with ua ≤ p − 1 for some a > 2. Then for any
M <∞, ψ satisfies (E1) for Cp,M

(
Rd
)
.

For dTV the total variation distance between probability distributions and BF (ε, dTV)
the closed ε-neighborhood of F under dTV, we have the following stabilization conditions:

(S1) For a given C ⊆ P
(
Rd
)
, F ∈ C, b > 0, and some (lε)ε>0 such that limε→0 lεε

b = 0, as
ε→ 0,

sup
G∈C∩BF (ε;dTV)

sup
n∈N

P
[
D d
√
nY ′

((
d
√
nYn

)
∩B d

√
nY ′ (lε)

)
6= D d

√
nY ′

(
d
√
nYn

)]
→ 0.

(S2) For G ∈ P
(
Rd
)
, there exist locally-determined radii of stabilization (ρz)z∈Rd for ψ

satisfying
lim
L→∞

sup
n∈N

P∗
[
ρ d
√
nY ′

(
d
√
nYn

)
> L

]
= 0. (2.6)
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(S1) and (S2) can be summarized as uniform stabilization conditions, either in probabil-
ity or almost surely. (S1) as stated is a technical condition mainly serving to weaken the
necessary conditions providing for bootstrap consistency. As such, we have the following
lemma linking (S1) and (S2).

Lemma 2.4. Let ψ satisfy (S2) for F ∈ Cp,M
(
Rd
)
. Then ψ satisfies (S1) for Cp,M

(
Rd
)
,

F , b = (p− 2) / (d (p− 1)), and any (lε)ε>0 such that limε→0 lεε
(p−2)/(d(p−1)) = 0 and

limε→0 lε =∞.

We can often greatly simplify the addition costs and radii of stabilization required in
(S1) and (S2). For example, given a translation-invariant function ψ and any D0, ρ0 for ψ
centered at 0, corresponding quantities can be constructed for any other center point. For
z ∈ Rd, Dz : X

(
Rd
)
→ R where Dz (S) = D0 (S − z) is an add-z cost for ψ centered at

z. Likewise ρz : X
(
Rd
)
→ [0,∞] where ρz (S) = ρ0 (S − z) is a radius of stabilization for

ψ centered at z. In the following, Pλ denotes a homogeneous Poisson process on Rd with
intensity λ.

Lemma 2.5. Let F ∈ Cp,M with p > 2 and M <∞. Let ρ0 be a locally-determined radius
of stabilization for ψ centered at 0. Suppose that for any given a, b ∈ (0,∞), and δ > 0,
there exists an La,b,δ < ∞ and a measurable set Aa,b,δ with ρ−1

0 ((La,b,δ,∞]) ⊆ Aa,b,δ such
that

sup
λ∈[a,b]

P∗ [ρ0 (Pλ) > La,b,δ] ≤ sup
λ∈[a,b]

P [Pλ ∈ Aa,b,δ] ≤ δ. (2.7)

Then for any δ > 0 there exists an nδ <∞ and Lδ <∞ such that

sup
n≥nδ

P∗ [ρ0 (Xn −X ′) > Lδ] ≤ δ. (2.8)

Lemma 2.5 provides a convenient tool for “de-Poissonizing” a locally-determined radius
of stabilization. Often it is easier to show stabilization properties for a homogeneous Poisson
process than for a binomial process directly. Lemma 2.5 allows for the extension of homoge-
neous Poisson results to the binomial setting, as is required for Lemma 4.1 and Corollary 4.6.
Note that the conclusion is not the same as the statement of (S1), only applying for n ≥ nδ.
Some extra effort is required for the conclusion to hold for all n ∈ N, depending on the
specifics of the function ψ considered. We come to the following important proposition, the
main supporting result for our general bootstrap consistency theorem, Theorem 2.7.

Proposition 2.6. For p > 2 and M < ∞, let ψ satisfy (E1) and (S1) for Cp,M
(
Rd
)
,

F ∈ Cp,M
(
Rd
)
, and some a > 2. Then for any G ∈ Cp,M

(
Rd
)
∩BF (ε, dTV), there exist iid

coupled random variables ((Xi, Yi))i∈N such that Xn = {Xi}ni=1
iid∼ F , Yn = {Yi}ni=1

iid∼ G,
and

sup
n∈N

Var

[
1√
n

(
ψ
(
d
√
nXn

)
− ψ

(
d
√
nYn

))]
≤ γε. (2.9)

The value γε does not depend on G and satisfies limε→0 γε = 0.

For any two distributions L1 and L2 over R, we may define the 2-Wasserstein distance
between L1 and L2 as

W2 (L1,L2) :=

√
inf

U∼L1,V∼L2

E
[
(U − V )

2
]

(2.10)
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where it is assumed that U and V follow a joint distribution with marginals L1 and L2. For
L denoting the law or distribution of a random variable, the variance given in the conclusion
of Proposition 2.6 bounds above

W 2
2

(
L
{

1√
n

(
ψ
(
d
√
nXn

)
− E

[
ψ
(
d
√
nXn

)])}
, (2.11)

L
{

1√
n

(
ψ
(
d
√
nYn

)
− E

[
ψ
(
d
√
nYn

)])})
.

Consequently, Proposition 2.6 shows that this W2 distance can be made arbitrarily small
uniformly over a neighborhood of distributions around F . An appropriately smoothed em-
pirical distribution falls within such a small neighborhood with high probability, given suf-
ficiently large sample sizes.

Furthermore, it can be seen that Proposition 2.6 extends directly to finite sums. Given

any (Ai)
k
i=1 and (Bi)

k
i=1, we have that Var

[∑k
i=1Ai −

∑k
i=1Bi

]
≤ k

∑k
i=1 Var [Ai −Bi].

Thus, if the conclusion of Proposition 2.6 holds for any finite set of functions, (ψi)
k
i=1, it

also holds for
∑k
i=1 ψi, with rate depending on the worst case ψi.

It should be noted that (S1) is slightly stronger than necessary to establish Proposi-
tion 2.6. As stated, D d

√
nY ′

(
( d
√
nYn) ∩B d

√
nY ′ (lε)

)
itself is compared to the terminal add-

one cost D d
√
nY ′ (

d
√
nYn). As could be useful for some statistics, it is only required that an

appropriate bound displays the desired stabilization property, see the provided proof for
details.

2.4. Smoothed Bootstrap

The bootstrap is an estimation technique used to construct approximate confidence intervals
for a given population parameter. In cases where asymptotic approximations for the sampling
distribution of a statistic are inconvenient or unavailable, bootstrap estimation provides a
general tool for constructing approximate confidence intervals. Bootstrap estimation is well-
studied in the statistical literature, an introduction being provided in [40]. In this section,
we will show consistency for a smoothed bootstrap in estimating the limiting distribution of
a standardized stabilizing statistic, ψ, in the multivariate setting. We describe the general
procedure below:

Let Xn = {Xi}ni=1
iid∼ F . We estimate the sampling distribution of

1√
n

(
ψ
(
d
√
nXn

)
− E

[
ψ
(
d
√
nXn

)])
(2.12)

using a plug-in estimator F̂n for the underlying data distribution F . In the standard non-
parametric bootstrap, we estimate F by the empirical distribution, giving probability to
each unique value of (Xi)

n
i=1, proportional to the number of repetitions within Xn. We have

the bootstrap statistic

1√
m

(
ψ
(
d
√
mX∗m

)
− E

[
ψ
(
d
√
mX∗m

) ∣∣Xn

])
, (2.13)

where X∗m = {X∗i }
m
i=1

iid∼ F̂n|Xn, conditional on Xn. The sampling distribution of the
bootstrap version provides an estimate for the distribution of the original statistic, which
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in the ideal case converges to the truth in the large-sample limit. Confidence intervals for
E [ψ ( d

√
nXn)] are then constructed from the bootstrap distribution and ψ ( d

√
nXn).

However, as will be seen in Section 4.1, for some classes of topological statistics the stan-
dard bootstrap may not directly replicate the correct sampling distribution asymptotically.
Consequently, we instead estimate F by a smoothed distribution approximation. Such a
smoothed bootstrap procedure can be shown to provide consistent estimation, even when
the standard nonparametric bootstrap may fail.

For the smoothed bootstrap sampling procedure outlined here, we require that F has
a density f . Let f̂n be an estimator for the true density with corresponding distribution
F̂n, each a function of the sample Xn. Conditional on Xn, we draw bootstrap samples X∗m
independently from F̂n|Xn. A particular choice of f̂n is given via kernel density estimation.
For a kernel function Q and bandwidth h > 0, the kernel density estimator of f(x) based

on the sample (Xi)
n
i=1 is f̂n,h (x) := 1/

(
nhd

)∑n
i=1Q ((x−Xi) /h).

In practice, when Q corresponds to a probability density, the kernel density estimator
allows for convenient sampling, as is required for implementation. Generating a sample from
f̂n,h is equivalent to first drawing from the empirical distribution on Xn, then adding in-
dependent noise following the distribution defined by Q, scaled by the bandwidth h. Other
density estimators, including those using higher-order kernels, may not facilitate efficient
sampling. However, the theory established here supports the use of any density estimator
which meets the required convergence criteria, computational factors aside. More compli-
cated data-dependent estimators are also possible, falling under a similar sampling frame-
work. See Sections 5 and 6 for specifics on density estimation as pertains to this work from
a practical perspective.

We now present our main result. The following theorem establishes consistency for the
smoothed bootstrap in the multivariate setting. We give the result for a vector of stabilizing
statistics. In the context of the topological statistics introduced in Section 3, this can be the
persistent Betti numbers or Euler characteristic evaluated at different filtration parameters.

Theorem 2.7. Let F ∈ P
(
Rd
)

with density f such that ‖f‖p < ∞ for some p > 2.

Furthermore, let F and f̂n be such that ‖f̂n − f‖1 → 0 and ‖f̂n − f‖p → 0 in probability

(resp. a.s.). Suppose ~ψ : X̃
(
Rd
)
→ Rk has component functions ψj : X̃

(
Rd
)
→ R, 1 ≤ j ≤ k

satisfying (E1) and (S1) for Cp,M
(
Rd
)
, M > ‖f‖p, F , and b = (p− 2) / (d (p− 1)). Then

for a sample Xn = {Xi}ni=1
iid∼ F , (mn)n∈N such that limn→∞mn =∞, a bootstrap sample

X∗mn = {X∗i }
mn
i=1

iid∼ F̂n|Xn, and a multivariate distribution G,

1√
n

(
~ψ
(
d
√
nXn

)
− E

[
~ψ
(
d
√
nXn

)]) d→ G

if and only if

1
√
mn

(
~ψ
(
d
√
mnX∗mn

)
− E

[
~ψ
(
d
√
mnX∗mn

) ∣∣Xn

])
d→ G in probability (resp. a.s.).

Theorem 2.7 establishes the asymptotic validity of bootstrap estimation for a range of
stabilizing statistics under fairly mild conditions on the underlying density. However, it
should be noted that further restrictions on the density and density estimate may be required
to satisfy (E1) and (S1), see Corollary 4.6 for example. The conditions under which ‖f̂n,hn−
f‖1 → 0 in probability or a.s. can be found in [20]. Proposition C.1 considers the convergence

of ‖f̂n,hn − f‖p, either in probability or almost surely. This result is outside the main
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contribution of this paper, but is interesting in its own right. Notably, no conditions are
placed on the density f except ‖f‖p <∞.

As a point of caution, it is known that kernel density estimators suffer from a curse of
dimensionality. The convergence properties of the density estimator f̂n appear implicitly
within the necessary assumptions for Theorem 2.7. In particular, diminishing performance
can be expected in higher dimensions, as shown by the provided simulations of Section 5.

The above result holds for any choice of mn such that limn→∞mn =∞, and is stated as
such for the sake of generality. In practical application, mn = n is standard, and will be used
throughout the simulation and data analysis sections of this paper. However, given that the
computational complexity of ψ often grows quickly with n, using a smaller mn could prove
more feasible from a computational perspective.

Strictly speaking, convergence to a limiting distribution is not required for the boot-
strap to provide asymptotically valid confidence intervals. Proposition 2.6 gives that, with
high probability, the smoothed bootstrap and true sampling distributions become close in 2-
Wasserstein distance. Provided that the cumulative distribution function F~ψn of (~ψ ( d

√
nXn)−

E[~ψ ( d
√
nXn)])/

√
n has the property

lim
δ→0

lim sup
n→∞

sup
x∈Rd

∣∣∣F~ψn (x+ δ)− F~ψn (x)
∣∣∣→ 0, (2.14)

it can be shown that confidence intervals constructed from the bootstrap statistic still achieve
the stated confidence level with high probability, given a sufficiently large sample. Conver-
gence to a continuous limiting CDF is just one way of satisfying this condition. However,
this extension is unavailable for the topological statistics considered here, as the behavior
of the finite sample statistics is currently very poorly understood.

In the later sections, we will show that the necessary moment and stabilization condi-
tions for Theorem 2.7 are satisfied for several specific statistics of interest, chiefly the Euler
characteristic and persistent Betti numbers for a class of simplicial complexes.

3. Simplicial Complexes and Persistence Homology

3.1. Simplicial Complexes

Let K = {Kr}r∈R be a filtration of simplicial complexes, with Kr ⊆ Kt for r < t. Each
complex is a collection of simplices, subsets of the vertex multiset, V . Here any repeated
vertices are considered distinct. For a collection of simplices K to be a simplicial complex, for
any two simplices S ⊂ V and T ⊂ S, S ∈ K only if T ∈ K. Here a simplex is only included
along with all of its subsets. For a given simplicial complex K, Kq denotes the subset of K
consisting of all q-simplices. q-simplices are those simplices consisting of q+ 1 vertices. Each
q-simplex is said to have dimension q. A graph or network refers to a simplicial complex
consisting of only 1-simplices (edges) and 0-simplices (vertices).

We will be looking at simplicial complexes constructed over point clouds in Rd. The two
major examples are the Čech and Vietoris-Rips complexes:

Kr
C (S) =

{
σ ⊆ S : ∃z ∈ Rd s.t. ‖z − x‖ ≤ r ∀x ∈ σ

}
(3.1)

Kr
VR (S) = {σ ⊆ S : ‖x− y‖ ≤ 2r ∀x, y ∈ σ} . (3.2)

Each of these complexes summarizes the geometric and topological properties within a
given point cloud. The Vietoris-Rips complex can be considered a “completion” of the Čech
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complex, in so much that the Vietoris-Rips complex is the largest simplicial complex with
the same edge set as the Čech complex. While the primary motivation for the results given
here is application to the Čech and Vietoris-Rips complexes, our main results apply for a
range of possible complexes. For example, for computational reasons it is often convenient
to limit the number of simplices present within the final complex. As such, we have two
approximations, the alpha complex and its completion

Kr
α (S) =

{
σ ⊆ S : ∃z ∈ Rd s.t. ‖z − x‖ ≤ r and ‖z − x‖ ≤ ‖z − y‖ ∀x ∈ σ ∀y ∈ S

}
Kr
α∗ (S) = {σ ⊆ S : {x, y} ∈ Kr

α (S) ∀x, y ∈ σ} .

These complexes avoid adding simplices between disparate points, controlling the total
size of the complex. It has been shown that the alpha and Čech complexes are both homotopy
equivalent to a union of closed balls around the underlying point set, thus sharing equivalent
homology groups. However, for the completion, denoted here as the alpha* complex, there
is no such relationship. The alpha complex is a subcomplex of the Čech complex as well as
the Delaunay complex

KD (S) =
{
σ ⊆ S : ∃z ∈ Rd s.t. ‖z − x‖ ≤ ‖z − y‖ ∀x ∈ σ ∀y ∈ S

}
. (3.3)

3.2. Persistent Homology

Now, of chief interest are the topological properties for a given simplicial complex. Both the
Čech and Vietoris-Rips complexes reflect the structure present within an underlying point
cloud. As such the topology of each provides an effective summary statistic for describing the
structural properties of a dataset in Rd. We provide below a short introduction to homology
and persistence homology as used in topological data analysis.

Define C (K) to be the free abelian group generated by the simplices in K. Elements
of C (K) are sums of the form

∑
i∈I aiσi, where σi ∈ K for ai an appropriate group

element. If we further allow the coefficients to come from a field, then C (K) is a vec-
tor space. For the purposes of this paper, coefficients are drawn from the two-element
field F2 = {0, 1}. C (K) is equipped with a linear boundary operator ∂ : C (K) → C (K)

where ∂ ({x1, ..., xq+1}) =
∑q
i=1 (−1)

i {x1, ..., xi−1, xi+1, ..., xq+1}. As a fundamental prop-
erty, ∂ ◦ ∂ = 0. With coefficients in F2, the boundary of a simplex reduces to the sum of all
its faces. Cq (K) = C (Kq) is the subspace spanned by the q-simplices of K, with the image
of Cq (K) under ∂ lying in Cq−1 (K). ∂q : Cq (K) → Cq−1 (K) denotes the restriction of ∂
to Cq (K).

We now construct the homology groups of K. Let Z (K) = ker (∂) be the subspace
of C (K) containing the cycles, those elements whose boundary under ∂ is 0. Zq (K) =
Z (Kq) = ker (∂q) is the restriction of Z (K) to dimension q. Let B (K) = im (∂) denote the
subspace of boundaries in C (K). Bq (K) = B (Kq) = im (∂q+1) is the subspace consisting
of the boundaries of elements in Cq+1 (K), lying in Cq (K).

The homology groups are given by Hq (K) := Zq (K) /Bq (K), the cycles Zq in dimension
q modulo the boundaries Bq. In words, the elements of the homology groups represent
“holes” within the simplicial complex, shown by closed loops whose interior is not filled by
other elements in the complex. These homology groups provide a topological summary of
the structure in the simplicial complex K. As stated previously, because we assume field
coefficients for C (K), each homology group is also a vector space. The Betti numbers of
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the complex represent the degree or dimension of each homology space. We denote the q-
th Betti number of K by βq (K) = dim (Zq (K) /Bq (K)) = dim (Zq (K)) − dim (Bq (K)).
Moving forward, Betti numbers and their like will be of primary interest.

Homology provides a topological invariant constructed from a single simplicial complex.
For a filtration of nested simplicial complexes, persistent homology provides more detail.
Given a filtration K = {Kr}r∈R, the homology groups for each complex, Hq (Kr), are
defined. However, due to the nested structure of the filtration, simplices are shared across
complexes, and thus there exists a natural inclusion map between homology spaces. Cycles
in Zq (Kr) are also cycles in Zq (Kt) if r < t. The boundary spaces behave similarly. For
a given equivalence class x + Bq (Kr) ∈ Hq (Kr), x + Bq (Kr) → x + Bq (Kt) specifies the
inclusion map from Hq (Kr) to Hq (Kt).

If a given element x̃ ∈ Hq (Kr) maps to ỹ ∈ Hq (Kt) upon inclusion, with ỹ 6= Bq (Kt),
we say that x̃ represents a persistent cycle across the filtration. Essentially the same under-
lying element is reflected in the homology groups over a range of simplicial complexes. The
collection of homology groups and inclusion maps form a persistence module. A wide body
of work exists on the properties of these persistence modules, see [55] for an introduction.
For any cycle feature in the filtration, there is a well defined death time, being the smallest
parameter level for which the given element lies in the kernel. The Betti numbers of a filtra-
tion form a function in the filtration parameter, r. We use the notation βrq (K) := βq (Kr).
The Betti numbers in this context count the number of persistent features extant at r.

It is a fundamental theorem of persistent homology that a sufficiently well-behaved per-
sistence module can be represented by a persistence diagram. A diagram D (K) is a multiset
in R2×Z of points (b, d, q). Each point represents a single persistent feature in the module.
b denotes the birth time of the feature, being the smallest parameter level for which that
feature is represented in the homology groups. Likewise d gives the death time, and q the
dimension of the feature. The collection of persistent features represented by the diagram
are a basis for the corresponding persistence module.

The persistence diagram is a simple summary statistic which condenses the complex
topological information present within a filtration. An example of a persistence diagram is
shown in Figure 1.

3.3. Persistent Betti Numbers

We arrive at the main focus of this section. For r ≤ s, define the persistent homology groups
of a filtration K = {Kr}r∈R as

Hr,s
q (K) := Zq (Kr) / (Bq (Ks) ∩ Zq (Kr)) . (3.4)

Nonzero elements in this group represent features born at or before time r which persist
until at least time s. The dimension of these spaces gives the persistent Betti numbers

βr,sq (K) := dim (Zq (Kr) /Bq (Ks) ∩ Zq (Kr)) (3.5)

= dim (Zq (Kr))− dim (Bq (Ks) ∩ Zq (Kr)) . (3.6)

Persistent Betti numbers are in one-to-one correspondence with the respective persistence
diagram. Here βr,sq (K) counts the number of points in D (K) of feature dimension q falling
within (−∞, r] × (s,∞]. When s = r, we recover the regular Betti numbers, βr,rq (K) =
βq (Kr). An important result for persistent Betti numbers is given in the following lemma.
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Lemma 3.1 (Geometric Lemma). [Lemma 2.11 in [27]] Let J = {Jr}r∈R and K =
{Kr}r∈R be filtrations of simplicial complexes with with Jr ⊆ Kr for all r ∈ R. Then∣∣βr,sq (K)− βr,sq (J )

∣∣ ≤ max
{

#
{
Kr
q \ Jrq

}
,#
{
Ks
q+1 \ Jsq+1

}}
(3.7)

≤ #
{
Kr
q \ Jrq

}
+ #

{
Ks
q+1 \ Jsq+1

}
. (3.8)

The Geometric Lemma 3.1 relates the change in persistent Betti numbers between two
filtrations to the additional simplices gained moving between them. As a brief explanation
of the lemma, simplices can be divided into two classes, positive and negative. For two
simplicial complexes J ⊂ K, if we imagine adding the additional q-simplices in K to J
one by one, a positive q-simplex will increase the dimension of Zq by one, and a negative
q-simplex will increase the dimension of Bq−1 by one. Either change can affect the persistent
Betti numbers. This dichotomy is a basic result from persistent homology, see [7]. The bound
given in the Geometric Lemma describes a worst case, when all q-simplices at time r are
positive or all (q+1)-simplices at time s are negative. The Geometric Lemma will be critical
moving forward, as it allows us to control the change in persistent Betti numbers by counting
appropriate simplices.

3.4. Euler Characteristic

For a given simplicial complex K, the Euler characteristic is defined as

χ (K) :=

∞∑
k=0

(−1)
k

# {Kk} . (3.9)

Provided there is an m ∈ N such that the Betti numbers βq (K) are 0 for all q > m (as
in (D4) holds), it can be shown that the Euler characteristic has the following identity with
the Betti numbers:

χ (K) =

∞∑
k=0

(−1)
k
βk (K) . (3.10)

This relationship with the Betti numbers makes the Euler characteristic an important
topological invariant in its own right. Applications of the Euler characteristic and derivatives
may be found in [41, 43, 49].

3.5. k-Nearest Neighbor Graph

The k-nearest neighbor graph KNN,k of a vertex set S connects each point x ∈ S with
the k closest vertices to x within S \ x. This graph may either be directed or undirected.
KNN,k is commonly used to analyze the clustering structure of a point cloud. Let the total
length of the edges in this graph be denoted by lNN,k. The total length of the k-nearest
neighbor graph, when suitably scaled, provides a measure of the average local “density”,
or concentration of the points in S. In Section 4.5, we will show bootstrap consistency for
lNN,k within the stabilization framework.
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Fig 1. Left: The original data set of size n = 10, 000, from which a single standard bootstrap sample is
drawn. Middle: Persistence diagrams for both the original and bootstrap samples, along with lines denoting
the median birth and death in each diagram. The asymptotic bias discussed in Section 4.1 can be clearly
seen. Right: Persistence diagrams after application of a multiplicative correction factor of

√
1− e−1 ≈ 0.795

to the bootstrap sample. Note that the median birth/death times correspond after transformation.

4. Bootstrapping Topological Statistics

4.1. Nonparametric Bootstrap

In this section, we will argue that the standard nonparametric bootstrap may fail to repro-
duce the correct sampling distribution asymptotically when applied to common topological
statistics.

For a wide class of simplicial complexes built over point sets in Rd, the corresponding
persistence diagram is unaffected by the inclusion of repeated points within the vertex set.
This behavior holds for both the Vietoris-Rips and Čech complexes, defined in Section 3.1.
In the case of the Čech complex, this phenomenon is seen most directly. The Čech complex
under the Euclidean metric is homologically equivalent to a union of closed balls centered
on the vertex points in Rd. Additional repetitions of vertex points leave both this union and
the derived persistence diagram unchanged.

In these cases where repetitions may be ignored in the calculation of statistics, the stan-
dard bootstrap behaves effectively like a subsampling technique. The size of a given subsam-
ple is random, equal to the number of unique points present in the corresponding bootstrap
sample.

Given a random sample Xn = {X1, ..., Xn}, it can be shown using elementary arguments
that a given bootstrap sample X∗n of size n from the empirical distribution over Xn is
expected to contain n(1 − (1− 1/n)

n
) ≈

(
1− e−1

)
n ≈ 0.632n unique points. As such,

X∗n behaves similarly to a sample of size 0.632n, but is not scaled accordingly within the
statistic

(
βr,sq ( d

√
nX∗n)− E

[
βr,sq ( d

√
nX∗n)

∣∣Xn

])
/ d
√
n. This discrepancy in scaling introduces

a non-negligible asymptotic bias. The effect is illustrated in Figure 1 for the Vietoris-Rips
complex.

Furthermore, the standard nonparametric bootstrap results in a fundamentally different
point process limit at small scales when compared to the original sample. For the original
sample, when Xn is drawn from a distribution with density f , the shifted and rescaled sam-
ple d
√
n (Xn − z) approaches a homogeneous Poisson process Pz with intensity f (z). From

the preceeding stabilization literature ([38], [31]), this limiting local point process drives
the asymptotic sampling distribution of

(
βr,sq ( d

√
nXn)− E

[
βr,sq ( d

√
nXn)

])
/ d
√
n. Consider-

ing the large-sample behavior of d
√
n (X∗n − z) |Xn, the smoothed bootstrap sampling pro-

cedure described in Section 2.4 can be shown to reproduce the same local Poisson process
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Pz asymptotically.
However, the same is not true for the standard bootstrap when repeated points are

ignored. In this case, d
√
n (X∗n − z) |Xn is restricted to the discrete set d

√
n (Xn − z), and

thus cannot reproduce Pz, whose domain is Rd. For this case, we describe the resulting
point process limit Qz in two steps. First, a homogenous Poisson process Pz is generated,
representing d

√
n (Xn − z). Defined conditionally, Qz|Pz is a random subset of Pz such that

P [x ∈ Qz|Pz] = 1 − e−1 ≈ .632, considering each point x ∈ Pz independently. We have
d
√
n (X∗n − z)→ Qz.
This difference in local behavior, combined with the asymptotic bias effect illustrated

earlier, are strong indicators that
(
βr,sq ( d

√
nX∗n)− E

[
βr,sq ( d

√
nX∗n)

] ∣∣Xn

)
/ d
√
n and(

βr,sq ( d
√
nXn)− E

[
βr,sq ( d

√
nXn)

])
/ d
√
n likely do not share a weak limit. A technical treat-

ment is omitted here, and is outlined merely to justify the use of our smoothed bootstrap
procedure in place of the standard nonparametric bootstrap. The smoothed bootstrap pro-
cedure provides for bootstrap consistency (Corollaries 4.2 and 4.3), and in the following
sections we consider only this approach.

4.2. General Conditions for Simplicial Complexes

The results presented in the following sections apply for a range of simplicial complexes
constructed over point clouds in Rd. Here we will explain the specific conditions used, and
for which common simplicial complexes they apply. Let K be a function taking as input
S ∈ X̃

(
Rd
)
, giving as output a simplicial complex with vertices in S. For a given simplex

σ, let the set diameter be diam (σ). We have the following conditions:

(K1) For any S ∈ X̃
(
Rd
)

and z /∈ S, K (S) ⊆ K (S ∪ {z}). Furthermore, σ ∈ K (S ∪ {z}) \
K (S) only if z ∈ σ.

(K2) For any S ∈ X̃
(
Rd
)

and z ∈ Rd, σ ∈ K (S) only if σ − z ∈ K (S − z).

(D1) There exists φ <∞ such that for any S ∈ X̃
(
Rd
)
, σ ∈ Kr (S) only if diam (σ) ≤ φ.

(D2) There exists φ <∞ such that for any S ∈ X̃
(
Rd
)

and z ∈ Rd, σ ∈ K (S ∪ {z})4K (S)
only if σ ⊂ Bz (φ).

(D3) There exists an η > 0 such that for any S ∈ X̃
(
Rd
)

and x ∈ Z (K (S)), diam (x) ≤ η
only if x ∈ B (K (S)).

(D4) There exists an m ∈ N such that for any k > m and S ∈ X̃
(
Rd
)
, Zk (K (S)) =

Bk (K (S)).

(K1) means that the addition of a new point will not change the existing complex, only
add new simplices. Furthermore, any new simplices gained must contain the added point
as a vertex. (K2) gives that the complex is essentially translation invariant. (D1) sets a
maximum diameter for any simplex in the complex. (D2) gives that the influence of a new
point on the complex is confined to a local region around that point, within a fixed diameter.
This condition allows for both the addition and removal of simplices from the complex, but
only within the prescribed radius. It can be easily shown that if (D2) holds for φ, (D1)
holds for 2φ. Conversely if both (K1) and (D1) hold for φ, (D2) also holds for φ. Finally,
(D3) gives that no small loops can exist with unfilled interiors, and (D4) gives that all Betti
numbers are 0 in sufficiently high feature dimensions.

Now, let K = (Kr)r∈R be a function taking as input S ∈ X̃
(
Rd
)
, giving as output a

filtration of simplicial complexes with vertices in S. As a slight abuse, we will often refer to
the function K as a filtration of simplicial complexes, even though it is a function defining



Roycraft et al./Bootstrapping Stabilizing Statistics 16

more than a single filtration, depending on the underlying point cloud. We say that a given
condition is satisfied for K if it is satisfied by Kr for any r ∈ R. In the cases of (D1),
(D2), and (D3), φ and η may depend on r as increasing functions φ : R → [0,∞) and
η : R→ [0,∞).

It can be shown that all of (K1)-(D3) are satisfied for both the Vietoris-Rips and Čech
complexes in Rd using φ (r) = η (r) = 2r. The same functions apply for the alpha complex
in Rd and its completion Kα∗ , with the notable exception that (K1) is violated. Finally,
it is known that (D4) is satisfied by the alpha, Čech, and Delauney complexes in Rd for
m = d− 1.

While covering a wide class of distance-based simplicial complexes, there are several
complexes used in practice that may fail to satisfy any or all of these. For example, the
addition of a new point to the Delaunay complex, Gabriel graph, witness complex, or k-
nearest neighbor graph can both add and remove simplices, violating (K1). Furthermore,
there is not any limit on the simplex diameter within any of these complexes, violating (D1).
Likewise, the addition of a single point can alter simplices at arbitrarily large distances,
violating (D2). As a special note, it is common in practice to consider the intersection of the
Vietoris-Rips and Delaunay complexes, which unfortunately may violate all the assumptions
here. It is unclear if an extension or special consideration could be made to incorporate these
complexes.

4.3. Stabilization of Persistent Betti Numbers

To apply the general bootstrap theorem, we first require a technical lemma establishing
a locally-determined radius of stabilization for persistent Betti numbers. The result given
applies for general classes of simplicial complexes constructed over subsets of Rd, using the
conditions listed previously. Reiterating, Cp,M

(
Rd
)

is the class of distributions G on Rd with
densities g such that ‖g‖p ≤M . We have the following:

Lemma 4.1. Let F ∈ Cp,M
(
Rd
)

for some p > 2 and M < ∞, and let K = {Kr}r∈R be
a filtration of simplicial complexes satisfying (K2), (D2), and (D3). Then for any r ∈ R,
s ∈ R, and q ≥ 0, βr,sq (K) satisfies (S2) for F .

4.4. Bootstrap Results for Persistence Homology

Here we present the main applied results of this paper. Each is derived from Theorem 2.7
and the stabilization lemma for persistent Betti numbers (Lemma 4.1). For given vectors

of birth and death times, ~r = (ri)
k
i=1 and ~s = (si)

k
i=1, let β~r,~sq =

(
βri,siq

)k
i=1

denote the
multivariate function whose components are the persistent Betti numbers evaluated at each
pair of birth and death times. For a vector of filtration times ~r = (ri)

k
i=1, let χ~r denote the

function giving the Euler characteristic at each time ri, with χ~r := (χ (Kri))
k
i=1.

The following apply for F ∈ P
(
Rd
)

with density f such that ‖f‖p < ∞ for some

p > 2, as specified. F and F̂n are such that F̂n has density f̂n, ‖f̂n − f‖1 → 0, and

‖f̂n − f‖p → 0 in probability (resp. a.s.). Let Xn = {Xi}ni=1
iid∼ F and (mn)n∈N such that

limn→∞mn = ∞. X∗mn = {X∗i }
mn
i=1

iid∼ F̂n
∣∣Xn is a bootstrap sample and G a multivariate

distribution. Recalling the conclusion of Theorem 2.7, for a multivariate statistic ~ψ:
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Statement 4.1.
1√
n

(
~ψ
(
d
√
nXn

)
− E

[
~ψ
(
d
√
nXn

)]) d→ G

if and only if

1
√
mn

(
~ψ
(
d
√
mnX∗mn

)
− E

[
~ψ
(
d
√
mnX∗mn

) ∣∣Xn

])
d→ G in probability (resp. a.s.).

For cases with a corresponding central limit theorem, G is the limiting normal distribution
of the original standardized statistic.

Corollary 4.2 (Persistent Betti Numbers). Let q ≥ 0 and p > 2q + 3. Let K be a
filtration of simplicial complexes satisfying (K1), (K2), (D1), and (D3). Then for any given
~r, ~s, Statement 4.1 holds for β~r,~sq .

Corollary 4.3 (Persistent Betti Numbers - Alt.). Let q ≥ 0 and p > 2q + 5. Let K be
a filtration of simplicial complexes satisfying (K2), (D2), and (D3). Then for any given ~r,
~s, Statement 4.1 holds for β~r,~sq .

The only differences between the above corollaries are the conditions satisfied by the
underlying simplicial complex and the necessary norm bound on the density. The corre-
sponding results for the Betti numbers follow as special cases of Corollaries 4.2 and 4.3,
when the given birth and death parameters are equal (β~rq = β~r,~rq ). Also, although the state-
ments of Corollaries 4.2 and 4.3 are given in terms of a fixed feature dimension q, a direct
extension exists if q = qi is allowed to differ for each (ri, si). The form as given shows the
dependence of the density norm assumption on the chosen feature dimension.

The higher value of p required in Corollary 4.3 compared to Corollary 4.2 can be explained
intuitively based on the assumptions used. For the persistent Betti numbers, the main
quantity controlling convergence is the expected number of simplices altered or introduced
when a new datapoint is added to the sample. (D2) ensures that these simplices fall within
a small ball around the new data point. The stated density norm conditions control the
expected number of points, and by extension possible simplices, that can lie within that
small ball. Introducing (K1) further controls the number of possible simplices, and allows
for a weakening of the necessary norm condition. (K1) requires that, as the sample grows
by a single point, any additional simplices must contain the new point as a vertex, and no
deletion of simplices is possible. This means that every added simplex has one less “free”
vertex, and a weaker norm condition is required for control. The same intuition applies
whenever (K1) is assumed.

In the specific case of the alpha complex, both of the above Corollaries 4.2 and 4.3 apply.
While the alpha complex does not satisy (K1), it has equal persistent Betti numbers to the
Čech complex, which does. Thus, the weaker conditions of Corollary 4.2 are sufficient in this
unique case.

Corollary 4.4 (Euler Characteristic). Let m <∞ and p > 2m+ 3. Let K be a filtration
of simplicial complexes satisfying (K1), (K2), (D1), (D3), and (D4). Then for any given ~r,
Statement 4.1 holds for χ~r.

Corollary 4.5 (Euler Characteristic - Alt.). Let m < ∞ and p > 2m + 5. Let K be a
filtration of simplicial complexes satisfying (K2), (D2), (D3), and (D4). Then for any given
~r, Statement 4.1 holds for χ~r.



Roycraft et al./Bootstrapping Stabilizing Statistics 18

It is suspected that some of the simplicial complex assumptions can be relaxed in the
persistent Betti number and Euler characteristic cases, but the extent to which this is pos-
sible is still unknown. Specifically, Corollary 4.2 requires a translation-invariant simplicial
complex (K2), along with the elimination of small loops via (D3). See Appendix A for al-
tered “B-bounded persistent Betti number” and “q-truncated Euler characteristic” problem
settings where these issues may be resolved.

To strengthen Corollaries 4.2-4.5 with rates, we require more specific knowledge about the
convergence to G of the original statistic. For persistent Betti numbers in the multivariate
setting, general central limit theorems have been shown in [31], but little is known at this
time with regards to rates of convergence. Proposition 2.6 does allow for rates of convergence
in 2-Wasserstein distance between the bootstrap and true sampling distributions for finite
sample sizes, but is phrased in terms of a tail probability for the radius of stabilization. See
the proofs of Corollaries 4.2-4.5 for details. For persistent Betti numbers the tail behavior
of the radius of stabilization is poorly understood. Owing to these difficulties, we may only
conclude consistency of the smoothed bootstrap for the functions considered.

4.5. Bootstrap Results for k-Nearest Neighbor Graphs

In the following, let Dγ,r0 (C) be the class of distributions G with support on a bounded
C ⊂ Rd such that

∫
Bx(r)

dG ≥ γrd for all r ≤ r0 and x ∈ C.

Corollary 4.6 (Total Edge Length of the k-Nearest Neighbor Graph). Let p > 2.

Furthermore, let F ∈ Dγ,r0 (C) and 1
{
F̂n ∈ Dγ,r0 (C)

}
→ 1 in probability (resp. a.s.). Then

Statement 4.1 holds for lNN,k.

The conditions of Corollary 4.6 are in particular satisfied when C is known and convex,
with f bounded below on C by a constant, provided further that ‖f̂n − f‖∞ → 0 in prob-
ability (resp. a.s.). We include this final result to demonstrate the utility of stabilization
as a general tool for proving bootstrap convergence theorems outside of topological data
analysis. The k-nearest neighbor graph does not fall under the general simplicial complex
conditions provided in Section 4.2, thus special treatment is needed to show the required
stabilization and moment conditions. Here we rely on previous results from the literature,
see [38] for stabilization results and the corresponding central limit theorem.

5. Simulation Study

In this section we present the results of a series of simulations illustrating the finite-sample
properties of the smoothed bootstrap applied to persistent Betti numbers βr,sq of the Vietoris-

Rips complex constructed over point sets in Rd. Precise definitions and an introduction to
the properties of these statistics may be found in Section 3. Source code for this section, as
well as for the data analysis of Section 6 is available at
github.com/btroycraft/stabilizing statistics bootstrap [44].

We investigate the coverage probability of bootstrap confidence intervals on the expected
persistent Betti numbers E

[
βr,sq ( d

√
nXn)

]
for a variety of feature dimensions, sample sizes,

data generating mechanisms, and bandwidth selectors. Table 1 lists brief descriptions of the
data distributions considered. For more detailed explanations, see Appendix D. The results of
the simulations are given in Table 2. For the persistent Betti numbers, a single choice of (r, s)
was made for each combination of distribution and feature dimension, chosen to lie within

https://github.com/btroycraft/stabilizing_statistics_bootstrap
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Label Description

F1 Rotationally symmetric in R2, finite L8 norm
F2 Rotationally symmetric in R2, finite L2 norm, infinite L8 norm
F3 S1 embedded in R2, additive Gaussian noise
F4 Uniformly distributed over B0 (1) in R3, additive Gaussian noise
F5 5 clusters in R3, additive exponential noise
F6 S2 embedded in R5, additive Cauchy noise
F7 Flat figure-8 embedded in R10, additive Gaussian noise

Table 1
Description of densities or distributions considered for the simulation study of Section 5. For the

distributions based on manifolds, we first draw uniformly from the manifold, then apply the prescribed
additive noise. Detailed explanations of the distributions considered, along with precise definitions are

available in Appendix D.

the main body of features in the corresponding persistence diagram. For computational
reasons, only feature dimensions q = 1 and q = 2 are considered.

We consider five data-driven bandwidth selectors. First are the “Hpi.diag” (plug-in),
“Hlscv.diag” (least-squares cross-validation), and “Hscv.diag” (smoothed cross-validation)
selectors from the ks package in R. Second, we include the adaptive bandwidth selector
described in Section 6. While this selector is tailored for the specifics of astronomical data,
we include it here for completeness. Each of these four selectors are available for data
dimension up to d = 6. Last, we consider Silverman’s rule of thumb (see [46]) via “bw.silv”
from the kernelboot package in R, which accepts data in any dimension.

For the two cross-validation selectors, note that a bandwidth is not always selected,
throwing errors on some datasets. To accommodate the automatic setting of this simulation
study, any error-producing data sets were simply rejected for each of these cases.

There is a noticeable drop-off in coverage as the data dimension increases. This is ex-
pected, as the kernel density estimator is known to suffer from a “curse of dimensionality”.
For distribution F6, which exhibits heavy tails, only the adaptive bandwidth selector per-
formed well, because outliers are weighted much less heavily in this case. It is likely that
performance will suffer generally in the presence of heavy tailed data when using one of the
selectors with common bandwidth.

The coverage proportion is generally smaller than the nominal level of 95%. Therefore, it is
recommended to use a larger than desired level, especially for limited sample sizes. In terms
of general performance, we recommend any of “Hpi.diag”, “Hlscv.diag”, or “Hscv.diag”.
These selectors provide the most consistent coverage, and effectively replicate the nominal
95% level in many cases, especially for the largest sample size n = 400. Silverman’s rule
performs badly in several cases, and should only be used in the absence of better alternatives.

6. Data Analysis

In this section we show how smoothed bootstrap estimation performs on a real dataset.
We consider a selection of galaxies from the Sloan Digital Sky Survey [5], chosen from a
selection of sky with right ascension values between 100◦ and 270◦ and declination between
−7◦ and 70◦. Three slices of galaxies were considered, separated by redshift, a measure of
radial distance from the solar system. The selections consist of galaxies with red-shift within
(0.025, 0.026), (0.027, 0.028), and (0.029, 0.030), respectively. These slices were chosen to
investigate the topological properties of the cosmic web across time. In this case, due to
the rough homogeneity of the web at large scales, few significant topological deviations are
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Distr. F1 F2 F3 F4 F5 F6 F7 F4 F5 F6 F7

q = 1 q = 2
r 4.94 5.20 3.03 1.92 0.30 1.78 1.28 2.96 0.39 2.71 1.46
s 5.36 5.60 3.28 2.12 0.31 1.91 1.32 3.04 0.40 2.80 1.47

n = 100 0.896 0.965 0.921 0.859 0.954 0.19 0.908 0.705 0.038
0.931 0.959 0.914 0.809 0.941 0.133 0.903 0.604 0.045
0.903 0.97 0.91 0.859 0.927 0.049 0.902 0.363 0.002
0.922 0.898 0.899 0.71 0.725 0.736 0.837 0.048 0.051
0.359 0.931 0.942 0.864 0 0 0.656 0.902 0 0 0.045

n = 200 0.908 0.971 0.94 0.898 0.942 0.159 0.878 0.795 0.125
0.92 0.972 0.946 0.891 0.923 0.106 0.872 0.707 0.074
0.888 0.975 0.959 0.906 0.892 0.06 0.908 0.277 0.031
0.888 0.909 0.828 0.783 0.773 0.705 0.673 0.032 0.27
0.299 0.954 0.903 0.899 0 0 0.766 0.882 0 0 0.537

n = 300 0.9 0.971 0.926 0.921 0.94 0.183 0.854 0.906 0.225
0.94 0.971 0.938 0.896 0.94 0.087 0.854 0.917 0.072
0.913 0.971 0.94 0.896 0.922 0.054 0.855 0.964 0.074
0.93 0.923 0.864 0.786 0.771 0.735 0.712 0.551 0.575
0.283 0.956 0.925 0.906 0 0 0.835 0.856 0 0 0.508

n = 400 0.918 0.961 0.947 0.934 0.96 0.175 0.851 0.883 0.259
0.927 0.951 0.938 0.92 0.955 0.063 0.839 0.88 0.076
0.908 0.976 0.933 0.924 0.939 0.062 0.863 0.958 0.099
0.911 0.922 0.874 0.813 0.825 0.771 0.695 0.952 0.789
0.266 0.961 0.909 0.922 0.114 0 0.891 0.859 0 0 0.584

Table 2
Coverage proportions for 95% smoothed bootstrap confidence intervals on the mean persistent Betti
numbers; coverage is estimated using N = 1, 000 independent base samples with B = 500 bootstrap

samples each. True mean persistent Betti numbers are estimated using a large (N = 100, 000) number of
independent samples from the true distribution. For each case, the values from top to bottom: Coverage
proportions using “Hpi.diag”, “Hlscv.diag”, “Hscv.diag”, “adaptive”, and “bw.silv” bandwidth selectors,

respectively. (see Section 5)
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expected.
Subset limits were chosen to maintain computational feasibility and avoid measurement

gaps. In an initial cleaning step, each slice was flattened using an area-preserving cylindrical
projection and trimmed so that the slices share a common boundary with the same number
of galaxies (2374) per slice. Angular units are converted to distances in Megaparsecs (Mpc)
based on the redshift and Hubble’s constant.

The distribution of galaxies in each dataset is modeled by a random sample from some
bivariate probability distribution, where the location of each galaxy is drawn independently
from the overall distribution. As a part of the model framework, the effect of gravitational
interaction manifests via a macroscopic change in the matter distribution, rather than as
dependency between individual galaxies.

Following the recommendation of [24], we estimate the density of the matter distribution
using the adaptive bandwidth selector described in [8]. This adaptive bandwidth selector was
chosen to accommodate for the large variations in density present within astronomy data.
The selectors considered in Section 5 do not perform well in this context, often oversmoothing
by a large margin. A pilot density estimator was constructed based on the “Hpi.diag” plug-in
bandwidth selector and a Gaussian kernel.

Visualizations of the density estimates are provided in Figure 2. Generally, the fit ad-
equately captures the filament structures present in the raw data. Within the persistence
diagrams, the mass of features present close to the main diagonal represents small-scale
holes between neighboring galaxies, whereas features farther from the diagonal represent
the large-scale holes formed by relatively disparate galaxies.

We apply the Vietoris-Rips complex to each of the slices, and calculate a selection of
persistent Betti numbers in dimensions q = 0 and q = 1. The 0-dimensional features sum-
marize cluster and filament structure, whereas the 1-dimensional features describe voids
and depressions. The transformed datasets and persistence diagrams in dimension q = 1
can be seen in Figure 2. We consider the Betti numbers βr0 and βr1 , as well as the persistent
Betti numbers βr,r+1

1 for r = 3, ..., 30 Mpc. Filtration parameters for the persistent Betti
numbers were chosen to lie close to the diagonal r = s, excluding features with a lifetime
less than 1 Mpc. We use bootstrap estimation to construct nominal 98% confidence intervals
for the population mean values, both pointwise and simultaneous within each regime across
r = 3, ..., 30 Mpc. The number of bootstrap replicates used was B = 20, 000, with results
seen in Figure 3.

In feature dimension q = 0, the curves show similar behavior across the slices. Consistent
with our empirical results, similar Betti curves are expected when the within-filament matter
distribution and overall frequency of filaments for each sample are equal. For feature dimen-
sion q = 1, more variation is present. However, as can be seen from the bootstrap confidence
intervals, much of this variation is explained by random fluctuation. For example, while a
notable depression around the scale of 8 Mpc exists for the third slice, it is still within the
margins of error provided. From this analysis, we do not find significant differences in the
topological properties of the three samples over the range of filtration parameters consid-
ered. The difference in topological structure seen within each pair of Betti curves is within
the margin of error provided by the bootstrap confidence intervals, especially considering
the wider simultaneous intervals.

The consistency shown in Section 4.4 for bootstrap estimation applies only for those
features within the “body” of topological features, being those occurring at a local scale.
Features with large persistence or ones that appear at large diameter are not accounted for
in this, as their relative weight is small within the persistent Betti numbers. As such, our
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Fig 2. Top row: Transformed point clouds. Middle row: Density estimates using adaptive bandwidth. Bottom
row: Persistence diagrams in dimension q = 1 for the Vietoris-Rips complex. Columns from left to right:
Galaxies with redshifts within (0.025, 0.026), (0.027, 0.028), and (0.029, 0.030), respectively. Axis units are
given in Megaparsecs (Mpc).

analysis does not preclude differences in topology at a large relative scale, describing the
largest galactic structures.

7. Discussion

In this work we have shown the large-sample consistency of multivariate bootstrap esti-
mation for a range of stabilizing statistics. This includes the persistent Betti numbers, the
Euler characteristic, and the total edge length of the k-nearest neighbor graph. However,
many open questions still remain.

In Section 4.1 it was argued that the standard nonparametric bootstrap may fail to di-
rectly reproduce the correct sampling distribution asymptotically for topological statistics
like the persistent Betti numbers. However, there remains the possibility that a corrected
version of the standard bootstrap could provide for consistency. As discussed in Section 4.1,
standard bootstrap sampling results in a fundamentally different point process limit at small
scales. Previous stabilization results primarily consider Poisson and related processes, mean-
ing a full theoretical treatment of the standard bootstrap would likely require reconstructing
much of the previous stabilization and central limit theorem results for the alternative lim-
iting process.
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Fig 3. Betti curves for the Vietoris-Rips complex. Top row: Betti numbers βr
0 . Middle row: Betti numbers

βr
1 . Bottom Row: persistent Betti numbers βr,r+1

1 . Columns correspond with those of Figure 2. Axis units
are given in Megaparsecs (Mpc). For each of r = 3, ..., 30 Mpc, simultaneous bootstrap confidence bands are
given in gray, drawn from bootstrap samples of size B = 20, 000. Likewise, pointwise intervals are given in
black.
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The results for the smoothed bootstrap presented here apply only in the multivariate
setting, the obvious extension being to stochastic processes. Essential to a process-level
result concerning the persistent Betti numbers would be a convenient tail bound for the
radius of stabilization, which is yet unavailable. In the case of persistent Betti numbers,
there is a strong relationship between the persistent Betti function and an empirical CDF
in two dimensions. As such, there is much established theory in that regard which may be
applied once stochastic equicontinuity is established.

In practice it is common that data comes not from a density in Rd, but instead from
a manifold. It is suspected that a version of the results in this paper could apply in the
manifold setting. However, this requires a bootstrap that adapts to a possibly unknown
manifold structure, similar to that found in [28]. Combined with the inherent challenges of
working with manifolds, this extension presents many technical hurdles.

Furthermore, in this work we have shown only consistency for bootstrap estimation to
a common limiting distribution. The rates of convergence in the 2-Wasserstein distance re-
garding the persistent Betti numbers rely on the unknown tail properties of the correspond-
ing radius of stabilization. Quantifying these tail properties is a challenging open problem,
and seems to be a key step towards an eventual rate calculation, as well as the previously
mentioned process-level result.

Finally, there are several statistics of interest, including those based on the Delaunay
complex, which do not fit into the specific frameworks provided here. It may be that these
statistics may still satisfy Theorem 2.7 in the general case, by techniques others than those
provided here.
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Appendix A: Altered Problem Settings

A.1. B-Bounded Persistent Betti Numbers

To effectively quantify the radius of stabilization for persistent Betti numbers, it is necessary
to place controls on the size of possible cycles within a simplicial complex. Large loops extend
the influence of a single point beyond the local region, and complicate statistical analysis.
As such, we present the following definitions which eliminate any large loops. Note that the
statistics of this appendix are presented for their convenient theoretical properties, not their
practical significance. Let S ∈ X̃

(
Rd
)

and K = K (S) be a simplicial complex with vertices
in S. For a given chain of simplices

∑m
i=1 σi ∈ C (K (S)), we have the diameter given by

diam (
∑m
i=1 σi) := diam (

⋃m
i=1 σi). Let the space of B-bounded cycles of the complex K be

the vector space, denoted by Zq,B (K), spanned by cycles in K with diameter no larger
than B. We have Zq,B (K) := span {x ∈ Zq (K) s.t. diam (x) ≤ B}. Likewise let the space
of B-bounded boundaries be Bq,B (K) := span {x ∈ Bq (K) s.t. diam (x) ≤ B}.
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The definitions presented here are directly inspired by a previous concept under the
name “M -bounded persistence” found in [4], and may be viewed as a generalization thereof.
In this previous work, it was shown that a diameter bound of this type is sufficient for
establishing functional central limit theorems for persistent Betti numbers, and thus an
extension is desireable. The original definition given in [4] is based on a correspondence
between loops and connected components in the complement space, and does not apply to
arbitrary simplicial complexes and feature dimensions.

The change in naming effected here is not meant to drawn a distinction between the two
definitions, but purely to avoid overloading symbols within this paper. M is used in this
work to denote an upper bound for a density norm.

The B-bounded spaces obey many of the same properties as their original counterparts.
We have Bq,M (K) ⊆ Zq,M (K). Thus we can define the B-bounded homology spaces as
Hq,B (K) = Zq,B (K) /Bq,B (K). It should be noted that these definitions allow for chains
of unbounded diameter, so long as there exists a decomposition into a sum of bounded
chains. Furthermore, for Bq,B (K), the diameter control is on the chains x ∈ Bq (K), not on
a corresponding y ∈ Cq+1 (K) with x = ∂y. It is possible to have a chain with arbitrarily
high diameter, whose boundary has diameter less than B.

We next define the analog of Betti numbers and persistent Betti numbers over a filtration
of simplicial complexes in the bounded context. Given a filtration K = {Kr}r∈R, we have
B-bounded analogs for the Betti numbers, persistent homology spaces, and persistent Betti
numbers given by

βrq,B (K) := dim (Hq,B (Kr)) (A.1)

= dim (Zq,B (Kr))− dim (Bq,B (Kr)) (A.2)

Hr,s
q,B (K) :=

Zq,B (Kr)

Zq,B (Kr) ∩Bq,B (Ks)
(A.3)

βr,sq,B (K) := dim
(
Hr,s
q,B (K)

)
(A.4)

= dim (Zq,B (Kr))− dim (Zq,B (Kr) ∩Bq,B (Ks)) . (A.5)

Unfortunately, no direct analog of the Geometric Lemma 3.1 exists for B-bounded persis-
tent Betti numbers. The addition of a positive simplex can add more than one dimension to
Zq,B . Consider Zq consisting of a single cycle with diameter above B but below 2B, meaning
Zq,B = {0} initially. Now let the loop be split in two by a new simplex σ. Each piece may
now be of diameter less than B, unlike the original. In this way a single simplex can increase
the dimension of Zq,B by two or more. The same is true for the negative simplices. Consider
the same setup, but now extend each simplex towards a distant point x in a cone. In this
case we have Zq,B = Bq,B = {0} initially. The inclusion of the simplex σ ∪{x} will split the
boundary space just as before into two bounded pieces.

Thus it becomes clear that we must utilize slightly different techniques when consider-
ing B-bounded persistence. We have the following inequality, the analog of the Geometric
Lemma for B-bounded persistent Betti numbers.
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Lemma A.1. Let J = {Jr}r∈R and K = {Kr}r∈R be filtrations of simplicial complexes
with Jr ⊆ Kr for all r ∈ R. Then∣∣∣βr,sq,B (K)− βr,sq,B (J )

∣∣∣ ≤ max

{
dim

(
Zq,B (Kr)

Zq,B (Jr)

)
,dim

(
Bq,B (Ks)

Bq,B (Js)

)}
(A.6)

≤ dim

(
Zq,B (Kr)

Zq,B (Jr)

)
+ dim

(
Bq,B (Ks)

Bq,B (Js)

)
. (A.7)

Proof. ∣∣∣βr,sq,B (K)− βr,sq,B (J )
∣∣∣

=

∣∣∣∣dim

(
Zq,B (Kr)

Zq,B (Kr) ∩Bq,B (Ks)

)
− dim

(
Zq,B (Jr)

Zq,B (Jr) ∩Bq,B (Js)

)∣∣∣∣
=

∣∣∣∣dim

(
Zq,B (Kr) +Bq,B (Kr)

Zq,B (Jr) +Bq,B (Kr)

)
− dim

(
Zq,B (Jr) ∩Bq,B (Ks)

Zq,B (Jr) ∩Bq,B (Js)

)∣∣∣∣
≤ max

{
dim

(
Zq,B (Kr) +Bq,B (Kr)

Zq,B (Jr) +Bq,B (Kr)

)
,dim

(
Zq,B (Jr) ∩Bq,B (Ks)

Zq,B (Jr) ∩Bq,B (Js)

)}
≤ max

{
dim

(
Zq,B (Kr)

Zq,B (Jr)

)
,dim

(
Bq,B (Ks)

Bq,B (Js)

)}
≤ dim

(
Zq,B (Kr)

Zq,B (Jr)

)
+ dim

(
Bq,B (Ks)

Bq,B (Js)

)
.

We make a note here about the difference between Lemma A.1 and the Geometric
Lemma 3.1. While drawn from the same fundamental inequality, in the persistent Betti
number case, we reduce to counting the simplices that are added when moving from one
complex to the other. This reduction cannot be made in the B-bounded case, and we must
count the number of additional linearly independent loops and boundaries. Different combi-
natorial techniques will be needed when applying each lemma, as can be seen in the proofs
of Corollaries 4.2, 4.3, and A.6.

A.2. Stabilization Results

We define the q-truncated Euler characteristics as

χq (K) :=

q∑
k=0

(−1)
k

# {Kk} . (A.8)

We have the following stabilization lemmas for B-bounded persistent Betti numbers and
q-truncated Euler characteristics. Since in both Lemmas A.2 and A.3 the radius of stabi-
lization is a deterministic constant, (S2) is satisfied for any distribution G. The same is true
in the following results for the truncated Euler characteristics.

Lemma A.2. Let K satisfy (K1). Then for any B ≥ 0, r ∈ R, s ∈ R, q ∈ N0, and z ∈ Rd,
ρz = 2B is a locally determined radius of stabilization for βr,sq,B (K) centered at z.
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Proof. Let a ≥ 2B and S ∈ X
(
Rd
)
. We decompose Zq,B (Kr ((S ∩Bz (a)) ∪ {z})) into three

spaces. Let Uz be spanned by the generators of Zq,B (Kr ((S ∩Bz (a)) ∪ {z})) with z as a
vertex. Let Ua be spanned by the generators with vertices within Bz (a) \Bz (2B). Finally,
let U∗ be spanned by the generators without z as a vertex and with no vertices within
Bz (a) \ Bz (2B). Since the generators of Zq,B (Kr ((S ∩Bz (a)) ∪ {z})) have diameter at
most B, there are no generating cycles with vertices both at z and in Bz (a) \Bz (2B).

By (K1) we have Zq,B (Kr ((S ∩Bz (a)) ∪ {z})) = Uz+Ua+U∗, Zq,B (Kr (S ∩Bz (a))) =
Ua + U∗, Zq,B (Kr ((S ∩Bz (2B)) ∪ {z})) = Uz + U∗, and Zq,B (Kr (S ∩Bz (2B))) = U∗.

Now for any cycle within Uz, the associated vertex set must lie within Bz (B). Likewise,
for any cycle in Ua, the associated vertex set must lie within Bz (a) \Bz (B). These vertex
sets cannot intersect, thus Uz ∩ Ua = {0}.

Now, consider any vector spaces X, Y , and Z such that X ∩Y = {0}. Because X ∩Y ∩Z
is a subspace of X ∩ Y , it is also the trivial space {0}. We have

dim (X + Y + Z)− dim (Y + Z) (A.9)

= dim (X)− dim (X ∩ Y )− dim (X ∩ Z) + dim (X ∩ Y ∩ Z)

= dim (X)− dim (X ∩ Z)

= dim (X + Z)− dim (Z) . (A.10)

We use this result in each of the following. We have

dim (Zq,B (Kr ((S ∩Bz (a)) ∪ {z})))− dim (Zq,B (Kr (S ∩Bz (a)))) (A.11)

= dim (Uz + Ua + U∗)− dim (Ua + U∗)

= dim (Uz + U∗)− dim (U∗)

= dim (Zq,B (Kr ((S ∩Bz (2B)) ∪ {z})))− dim (Zq,B (Kr (S ∩B0 (2B)))) . (A.12)

A similar result holds for the boundaries. Let Vz, Va, and V∗ be defined similarly to
Uz, Ua, and U∗, respectively, instead using the generators of Bq,B (Ks ((S ∩Bz (a)) ∪ {z})).
Similarly Bq,B (Ks ((S ∩Bz (a)) ∪ {z})) = Vz +Va +V∗, Bq,B (Ks ((S ∩Bz (2B)) ∪ {z})) =
Vz + V∗, and we conclude Vz ∩ Va = {0}. Furthermore, we have Uz ∩ Va = Vz ∩Ua = {0} by
similar vertex-based arguments. Then (Uz + Vz) ∩ (Ua + Va) = {0}. We have

dim (Zq,B (Kr ((S ∩Bz (a)) ∪ {z})) ∩Bq,B (Ks ((S ∩Bz (a)) ∪ {z})))
− dim (Zq,B (Kr (S ∩Bz (a))) ∩Bq,B (Ks (S ∩Bz (a))))

= dim ((Uz + Ua + U∗) ∩ (Vz + Va + V∗))

− dim ((Ua + U∗) ∩ (Va + V∗))

= dim (Uz + Ua + U∗) + dim (Vz + Va + V∗)− dim (Uz + Ua + U∗ + Vz + Va + V∗)

− dim (Ua + U∗)− dim (Va + V∗) + dim (Ua + U∗ + Va + V∗)

= dim (Uz + U∗)− dim (U∗) + dim (Vz + V∗)− dim (V∗)

− dim (Uz + U∗ + Vz + V∗) + dim (U∗ + V∗)

= dim ((Uz + U∗) ∩ (Vz + V∗))− dim (U∗ ∩ V∗)
= dim (Zq,B (Kr ((S ∩Bz (2B)) ∪ {z})) ∩Bq,B (Ks ((S ∩Bz (2B)) ∪ {z})))
− dim (Zq,B (Kr (S ∩Bz (2B))) ∩Bq,B (Ks (S ∩Bz (2B)))) .

Combining these pieces, the B-bounded persistent Betti numbers must stabilize after a
constant radius of ρz = 2B.
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Lemma A.3. Let K satisfy (D2). Then for any B ≥ 0, r ∈ R, s ∈ R, q ≥ 0, and z ∈ Rd,
ρz = 2 max {φ (r) , φ (s)} + 2B is a locally determined radius of stabilization for βr,sq,B (K)
centered at z.

Proof. Denote by φ := max (φ (r) , φ (s)). Let S ∈ X
(
Rd
)
. Furthermore, let T be any

finite multiset of points in Rd with S ∩ Bz (2φ+ 2B) ⊆ T and y /∈ Bz (2φ+ 2B). We have
the following partition. Let Uz, Uy, and U∗, respectively, be spanned by the generators of
Zq,B (Kr (T )) having: a simplex within Bz (φ), a simplex within By (φ), or neither. Let U∗z
be spanned by the generators of Zq,B (Kr (T ∪ {z})) have a simplex in Bz (φ). Finally, let
U∗y be spanned by the generators of Zq,B (Kr (T ∪ {y})) have a simplex in By (φ).

By (D2) we have Zq,B (Kr (T )) = Uz + U∗ + Uy, Zq,B (Kr (T ∪ {z})) = U∗z + U∗ + Uy,
Zq,B (Kr (T ∪ {y})) = Uz + U∗ + U∗y , and Zq,B (Kr (T ∪ {z, y})) = U∗z + U∗ + U∗y .

Now for any cycle within Uz, the associated vertex set must lie within Bz (φ+B). Like-
wise, for any cycle in Uy, the associated vertex set must lie within By (φ+B). Because
‖y − z‖ > 2φ + 2B, these vertex sets cannot intersect, thus Uz ∩ Uy = {0}. Likewise
Uz ∩ U∗y = U∗z ∩ Uy = U∗z ∩ U∗y = {0}.

Now, for any vector spaces X, X∗, Y , and Z such that X ∩ Y ∗ = X∗ ∩ Y ∗ = {0}, we
have

dim (X∗ + Y ∗ + Z)− dim (X + Y ∗ + Z)

= dim (X)− dim (X∗) + dim (X ∩ Y ∗) + dim (X ∩ Z)− dim (X∗ ∩ Y ∗)− dim (X∗ ∩ Z)

+ dim (X∗ ∩ Y ∗ ∩ Z)− dim (X ∩ Y ∗ ∩ Z)

= dim (X)− dim (X∗) + dim (X ∩ Z)− dim (X∗ ∩ Z)

= dim (X + Z)− dim (X∗ + Z) .

Thus we have

dim (Zq,B (Kr (T ∪ {z, y})))− dim (Zq,B (Kr (T ∪ {y})))
= dim

(
U∗z + U∗ + U∗y

)
− dim

(
Uz + U∗ + U∗y

)
= dim (U∗z + U∗)− dim (Uz + U∗)

= dim (U∗z + U∗ + Uy)− dim (Uz + U∗ + Uy)

= dim (Zq,B (Kr (T ∪ {z})))− dim (Zq,B (Kr (T ))) .

A similar result holds for the boundaries. Let Vz, V
∗
z , Vy, V ∗y , and V∗ be defined similarly

to Uz, U
∗
z , Uy, U∗y , and U∗, respectively, instead using the generators of Bq,B (Kr (T )),

Bq,B (Kr (T ∪ {y})), and Bq,B (Kr (T ∪ {y})). Similarly Bq,B (Ks (T )) = Vz + V∗ + Vy,
Bq,B (Ks (T ∪ {z})) = V ∗z + V∗ + Vy, Bq,B (Ks (T ∪ {y})) = Vz + V∗ + V ∗y , and
Bq,B (Ks (T ∪ {z, y})) = V ∗z + V∗ + V ∗y . We conclude Vz ∩ Vy = Vz ∩ V ∗y = V ∗z ∩ Vy =
V ∗z ∩ V ∗y = {0}. Furthermore, we have Uz ∩ Vy = Uz ∩ V ∗y = U∗z ∩ Vy = U∗z ∩ V ∗y = {0}
and Vz ∩ Uy = Vz ∩ U∗y = V ∗z ∩ Uy = V ∗z ∩ U∗y = {0} by similar vertex-based argu-

ments. Thus (Uz + Vz) ∩ (Uy + Vy) = (Uz + Vz) ∩
(
U∗y + V ∗y

)
= (U∗z + V ∗z ) ∩ (Uy + Vy) =
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(U∗z + V ∗z ) ∩
(
U∗y + V ∗y

)
= {0}. We have

dim (Zq,B (Kr (T ∪ {z, y})) ∩Bq,B (Ks (T ∪ {z, y})))
− dim (Zq,B (Kr (T ∪ {y})) ∩Bq,B (Ks (T ∪ {y})))

= dim
((
U∗z + U∗ + U∗y

)
∩
(
V ∗z + V∗ + V ∗y

))
− dim

((
Uz + U∗ + U∗y

)
∩
(
Vz + V∗ + V ∗y

))
= dim

(
U∗z + U∗ + U∗y

)
+ dim

(
V ∗z + V∗ + V ∗y

)
− dim

(
U∗z + U∗ + U∗y + V ∗z + V∗ + V ∗y

)
− dim

(
Uz + U∗ + U∗y

)
− dim

(
Vz + V∗ + V ∗y

)
+ dim

(
Uz + U∗ + U∗y + Vz + V∗ + V ∗y

)
= dim (U∗z + U∗ + Uy)− dim (Uz + U∗ + Uy) + dim (V ∗z + V∗ + Vy)− dim (Vz + V∗ + Vy)

− dim (U∗z + U∗ + Uy + V ∗z + V∗ + Vy) + dim (Uz + U∗ + Uy + Vz + V∗ + Vy)

= dim ((U∗z + U∗ + Uy) ∩ (V ∗z + V∗ + Vy))− dim ((Uz + U∗ + Uy) ∩ (Vz + V∗ + Vy))

= dim (Zq,B (Kr (T ∪ {z})) ∩Bq,B (Ks (T ∪ {z})))
− dim (Zq,B (Kr (T )) ∩Bq,B (Ks (T ))) .

Thus, the addition of y to T does not change the add-z cost. We proceed inductively.
Starting with S∩Bz (2φ+ 2B), for any a > 2φ+2B, the finitely many points of (S ∩Bz (a))\
(S ∩Bz (2φ+ 2B)) may be added one at a time, while leaving the add-z cost unchanged.
Thus, the B-bounded persistent Betti numbers must stabilize after a constant radius of
ρz = 2φ+ 2B.

Lemma A.4. Let K satisfy (K1) and (D1). Then for any z ∈ Rd and q ≥ 0, ρz = φ is a
locally determined radius of stabilization for χq (K) centered at z.

Proof. Let a ≥ φ. By (K1) and (D1), we can partition K ((S ∩Bz (a)) ∪ {z}) into the sets

U := {σ ∈ K ((S ∩Bz (a)) ∪ {z}) s.t. z ∈ σ} (A.13)

V := {σ ∈ K ((S ∩Bz (a)) ∪ {z}) s.t. σ ⊂ Bz (φ) \ {z}} (A.14)

W := {σ ∈ K ((S ∩Bz (a)) ∪ {z}) s.t. σ ∩Bz (a) \Bz (φ) 6= ∅} (A.15)

Condition (D1) gives that no simplices may simultaneously have z as a vertex and inter-
sect Bz (a) \ Bz (φ), thus U , V , and W indeed partition K ((S ∩Bz (a)) ∪ {z}). Condition
(K1) gives that the addition of {z} and S∩(Bz (a) \Bz (φ)) to S∩Bz (φ) may only introduce
simplices to K (S ∩Bz (φ)) with vertices somewhere within S ∩ (Bz (a) \Bz (φ))∪ {z}, and
thus not included in V . Therefore, V ⊆ K (S ∩Bz (φ)). Furthermore, since S ∩ Bz (φ) ⊂
(S ∩Bz (a)) ∪ {z}, K (S ∩Bz (φ)) ⊆ V . Thus we have V = K (S ∩Bz (φ)). Using similar
arguments, condition (K1) also gives K ((S ∩Bz (φ)) ∪ {z}) = U ∪ V and K (S ∩Bz (a)) =
V ∪W .

For Uk, Vk, and Wk denoting the set of k-simplices contained in U , V , and W , respectively,
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the add-z cost for the q-truncated Euler characteristic becomes

χq (K ((S ∩Bz (a)) ∪ {z}))− χq (K (S ∩Bz (a))) (A.16)

=

q∑
k=0

(−1)
k

# {Kk ((S ∩Bz (a)) ∪ {z})} −
q∑

k=0

(−1)
k

# {Kk (S ∩Bz (a))} (A.17)

=

q∑
k=0

(−1)
k

(# {Uk}+ # {Vk}+ # {Wk})−
q∑

k=0

(−1)
k

(# {Vk}+ # {Wk}) (A.18)

=

q∑
k=0

(−1)
k

(# {Uk}+ # {Vk})−
q∑

k=0

(−1)
k

# {Vk} (A.19)

=

q∑
k=0

(−1)
k

# {Kk ((S ∩Bz (φ)) ∪ {z})} −
q∑

k=0

(−1)
k

# {Kk (S ∩Bz (φ))} (A.20)

= χq (K ((S ∩Bz (φ)) ∪ {z}))− χq (K (S ∩Bz (φ))) . (A.21)

We see that χq (K) stabilizes after a constant radius of ρz = φ, thus the local-determination
criterion is immediately satisfied.

Lemma A.5. Let K satisfy (D2). Then for any z ∈ Rd and q ≥ 0, ρz = 2φ is a locally
determined radius of stabilization for χq (K) centered at z.

Proof. Let z ∈ Rd and S ∈ X
(
Rd
)
. Furthermore, let T be a finite multiset of points in Rd

such that S ∩Bz (2φ) ⊆ T . Let y /∈ Bz (2φ). Consider the partition

U := {σ ∈ K (T ) s.t. σ ⊂ Bz (φ)} (A.22)

U∗ := {σ ∈ K (T ∪ {z}) s.t. σ ⊂ Bz (φ)} (A.23)

V := {σ ∈ K (T ) s.t. σ ⊂ By (φ)} (A.24)

V ∗ := {σ ∈ K (T ∪ {y}) s.t. σ ⊂ By (φ)} (A.25)

W := {σ ∈ K (T ) s.t. σ * Bz (φ) and σ * By (φ)} . (A.26)

Condition (D2) limits the influence of a single additional point on the complex to the
ball of radius φ around it. Bz (φ)∩Bz (φ) = ∅ because ‖y− z‖ > 2φ. Thus we have K (T ) =
U ∪W ∪ V , K (T ∪ {z}) = U∗ ∪W ∪ V , K (T ∪ {y}) = U ∪W ∪ V ∗, and K (T ∪ {y, z}) =
U∗ ∪W ∪ V ∗.

For Uk, U∗k , Vk, V ∗k , and Wk denoting the set of k-simplices contained in U , U∗, V , V ∗,
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and W , respectively, the add-z cost for the q-truncated Euler characteristic becomes

χq (K (T ∪ {y, z}))− χq (K (T ∪ {y}))

=

q∑
k=0

(−1)
k

# {Kk (T ∪ {y, z})} −
q∑

k=0

(−1)
k

# {Kk (T ∪ {y})}

=

q∑
k=0

(−1)
k

(# {U∗k}+ # {Wk}+ # {V ∗k })−
q∑

k=0

(−1)
k

(# {V ∗k }+ # {Wk})

=

q∑
k=0

(−1)
k

(# {U∗k}+ # {Wk}+ # {Vk})−
q∑

k=0

(−1)
k

(# {Vk}+ # {Wk})

=

q∑
k=0

(−1)
k

# {Kk (T ∪ {z})} −
q∑

k=0

(−1)
k

# {Kk (T )}

= χq (K (T ∪ {z}))− χq (K (T )) .

We see that the addition of {y} does not change the add-z cost. Starting with T =
S ∩ Bz (φ), for any radius a > 2φ, S ∩ (Bz (a) \Bz (φ)) consists of finitely many points,
which may be added to S ∩ Bz (φ) in succession while leaving the add-z cost unchanged.
We conclude that ρz = 2φ is a radius of stabilization for χq (K), and is locally-determined
by virtue of being constant.

A.3. Bootstrap Results

Here we give bootstrap convergence results for the altered statistics defined in Appendix A.1.

For given vectors of birth and death times, ~r = (ri)
k
i=1 and ~s = (si)

k
i=1, let β~r,~sq,B =

(
βri,siq,B

)k
i=1

denote the multivariate function whose components are the B-bounded persistent Betti
numbers evaluated at each pair of birth and death times. Likewise, for a vector of filtration
times ~r = (ri)

k
i=1, let χ~rq denote the multivariate function giving the q-truncated Euler

characteristic at each time ri, with χ~rq (K) := (χq (Kri))
k
i=1.

The following apply for F ∈ P
(
Rd
)

with density f such that ‖f‖p < ∞ for some

p > 2, as specified. F and F̂n are such that F̂n has density f̂n, ‖f̂n − f‖1 → 0, and

‖f̂n − f‖p → 0 in probability (resp. a.s.). Let Xn = {Xi}ni=1
iid∼ F and (mn)n∈N such that

limn→∞mn = ∞. X∗mn = {X∗i }
mn
i=1

iid∼ F̂n
∣∣Xn is a bootstrap sample and G a multivariate

distribution. Recalling the conclusion of Theorem 2.7, for a multivariate statistic ~ψ:

Statement A.1.
1√
n

(
~ψ
(
d
√
nXn

)
− E

[
~ψ
(
d
√
nXn

)]) d→ G

if and only if

1
√
mn

(
~ψ
(
d
√
mnX∗mn

)
− E

[
~ψ
(
d
√
mnX∗mn

) ∣∣Xn

])
d→ G in probability (resp. a.s.).

Corollary A.6. Let q ≥ 0 and p > 2q + 3. Let K be a filtration of simplicial complexes
satisfying (K1). Then for any given ~r, ~s, and B > 0, Statement A.1 holds for β~r,~sq,B.
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Note the difference in necessary conditions between Corollaries 4.2 and A.6. Corollary 4.2
notably requires a translation-invariant simplicial complex, along with the elimination of
small loops via (D3). Corollary A.6 imposes relatively few assumptions on the underlying
simplicial complex. As a general statement, it can be seen that the B-bounded persistent
Betti numbers defined here are better behaved than the unbounded persistent Betti numbers.
Furthermore, the B-bounded persistent Betti numbers allow for an explicit rate calculation
for the 2-Wasserstein metric in Proposition 2.6, see Appendix B.6 for details. For the un-
bounded persistent Betti numbers, this rate is stated implicitly in terms of the unknown
tail probability for the radius of stabilization.

Proof. Let Yn = {Yi}ni=1 be iid and Y ′ an independent copy. For a given q ≥ 0, B ≥ 0, and
r, s ∈ R, we will show that Br,sq,B (K) satisfies assumption (E2).

Applying Lemma A.1, we must bound above the number of linearly independent B-
bounded q-cycles and q-boundaries added when { d

√
nY ′} is included with the sample d

√
nYn.

We start by considering the cycles. By (K1) the addition of d
√
nY ′ will only introduce

simplices to the complex having d
√
nY ′ as a vertex. As such, any B-bounded cycles in

Zq (Kr ( d
√
n (Yn ∪ {Y ′}))) not having d

√
nY ′ as a vertex must already be in Zq (Kr ( d

√
nYn)),

and thus in Zq,B (Kr ( d
√
nYn)). Thus, we must only bound the possible number of linearly

independent B-bounded cycles within Kr ( d
√
n (∪{Y ′})) which have d

√
nY ′ as a vertex.

Let In :=
∑n
i=1 1 {‖Yi − Y ′‖ ≤ B/ d

√
n} be the number of sample points falling within B

of d
√
n.

We will construct a worst-case scenario. For any simplicial complexes J ⊆ K, we have
that Zq,B (J) ⊆ Zq,B (K). The addition of more simplices to Kr ( d

√
n (Yn ∪ {Y ′})) having

d
√
nY ′ as a vertex may increase the dimension of Zq,B (Kr ( d

√
n (Yn ∪ {Y ′}))), but will not

alter Zq,B (Kr ( d
√
nYn)). As a worst case, we assume Kr is such that all possible simplices

containing d
√
nY ′ are included. Thus, for any simplex σ ∈ Kr ( d

√
nYn) such that σ ⊆

( d
√
nYn)∩B d

√
nY ′ (B) and diam (σ) ≤ B, ∂ (σ ∪ { d

√
nY ′}) has diameter at most B, contains

d
√
nY ′ as a vertex, and is a cycle within Zr (Kr ( d

√
n (Yn ∪ {Y ′}))). Let

U :=
{
∂
(
σ ∪

{
d
√
nY ′

})
s.t. σ ⊆

(
d
√
nYn

)
∩B d

√
nY ′ (B) and # {σ} = q + 1

}
.

Now consider x to be any cycle in Zq (Kr ( d
√
n (Yn ∪ {Y ′}))) with diameter at most B

and a vertex at d
√
nY ′. For every simplex σ of x not containing d

√
nY ′ as a vertex, we add

∂ (σ ∪ { d
√
nY ′}) to x, ∂ (σ ∪ { d

√
nY ′}) necessarily having diameter less than B. This opera-

tion cannot add any new vertices to x, and thus cannot increase the total cycle diameter.
What remains after completing these additions is either 0 or a cycle x′ whose simplices all
contain d

√
nY ′ as a vertex, the latter being an impossibility. Thus, any B-bounded cycle in

Zq (Kr ( d
√
n (Yn ∪ {Y ′}))) having a vertex at d

√
nY ′ can be written as a linear combination

of B-bounded elements from U . For In :=
∑n
i=1 1 {‖Yi − Y ′‖ ≤ B/ d

√
n}, we arrive at a worst

case bound of

dim

(
Zq,B (Kr ( d

√
n (Yn ∪ {Y ′})))

Zq,B (Kr ( d
√
nYn))

)
≤ # {U} =

(
In
q + 1

)
. (A.27)

A similar argument for the boundaries yields

dim

(
Bq,B (Ks ( d

√
n (Yn ∪ {Y ′})))

Bq,B (Ks ( d
√
nYn))

)
≤ # {U} =

(
In
q + 1

)
. (A.28)
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For any a > 2, via Lemma A.1 we have∣∣∣βr,sq,B (K ( d√n (Yn ∪ {Y ′})
))
− βr,sq,B

(
K
(
d
√
nYn

))∣∣∣a
≤ max

{
dim

(
Zq,B (Kr ( d

√
n (Yn ∪ {Y ′})))

Zq,B (Kr ( d
√
nYn))

)
,dim

(
Bq,B (Ks ( d

√
n (Yn ∪ {Y ′})))

Bq,B (Ks ( d
√
nYn))

)}a
≤
(

In
q + 1

)a
≤ 1

((q + 1)!)
a I

a(q+1)
n

≤ 1

((q + 1)!)
a

(
Ia(q+1)
n + 1

)
.

Here R = B, Ua = 1/ ((q + 1)!)
a
, and ua = a (q + 1). (E1) is then satisfied via Lemma 2.3.

(S2) is satisfied via Lemma A.2, in this case with a constant radius of stabilization of 2B.
An application of Theorem 2.7 gives the desired result.

In this case, given that the radius of stabilization is a known constant, an explicit rate for
γε in Proposition 2.6 can be calculated. Details omitted, from the proof of Proposition 2.6

we have δε = Bdε
p−2
p−1 up to constant factors. For p < ∞, using a = (p− 1) / (q + 1) we

achieve an optimal rate for γε of

O
(
Bd(1− 2q+2

p−1 )
(

1 +Bd(2q+2)
)
ε
p−2
p−1 (1− 2q+2

p−1 )
)
. (A.29)

For p =∞, using aε = 2− log (δε) we achieve an optimal rate of

O

εBd(2q+3)

(
− log

(
Bdε

)
log (− log (Bdε))

)2q+2
 . (A.30)

Corollary A.7. Let q ≥ 0 and p > 2q + 1. Let K be a filtration of simplicial complexes
satisfying (K1) and (D1). Then for any given ~r, Statement A.1 holds for χ~rq.

Proof. We will show that assumption (E2) is satisfied for ψ = χrq (K) := χq (Kr) given

r ∈ R. Let Yn = {Yi}ni=1 be an iid sample in Rd, with Y ′ an independent copy.
By (K1), and (D1) it suffices to count those simplices within B d

√
nY ′ (φ (r)) having a
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vertex at d
√
nY ′. Let In =

∑n
i=1 1 {‖Yi − Y ′‖ ≤ φ (r) / d

√
n}. For any a > 2, we have∣∣χrq (K ( d√n (Yn ∪ {Y ′})

))
− χrq

(
K
(
d
√
nYn

))∣∣a
=

∣∣∣∣∣
q∑

k=0

(−1)
k

#
{
Kr
k

(
d
√
n (Yn ∪ {Y ′})

)}
−

q∑
k=0

(−1)
k

#
{
Kr
k

(
d
√
nYn

)}∣∣∣∣∣
a

=

∣∣∣∣∣
q∑

k=0

(−1)
k (

#
{
Kr
k

(
d
√
n (Yn ∪ {Y ′})

)}
−#

{
Kr
k

(
d
√
nYn

)})∣∣∣∣∣
a

=

∣∣∣∣∣
q∑

k=0

(−1)
k

#
{
Kr
k

(
d
√
n (Yn ∪ {Y ′})

)
\Kr

k

(
d
√
nYn

)}∣∣∣∣∣
a

≤

(
q∑

k=0

(
In
k

))a

≤

(
q∑

k=0

Ikn
k!

)a

≤

(
q∑

k=0

Iqn
k!

)a
≤ (eIqn)

a

≤ ea (1 + Iaqn ) .

Here R = φ (r), Ua = ea, and ua = aq, satisfying (E2). (E1) then follows from Lemma 2.3
for p ≥ qa+1 > 2q+1. (S2) is satisfied via Lemma A.4 with a constant radius of stabilization
φ (r). (S1) is satisfied via Lemma 2.4. An application of Theorem 2.7 gives the final result.

For the rate in Proposition 2.6, for p <∞ we have that δε = ε
p−2
p−1 up to constant factors.

Using a = (p− 1) /q we achieve a final rate for γε of

O
(
ε
p−2
p−1 (1− 2q

p−1 )
)
. (A.31)

For p =∞, using a = aε = 2− log (ε) we achieve a final rate of

O

(
ε

(
− log (ε)

log (− log (ε))

)2q
)
. (A.32)

Corollary A.8. Let q ≥ 0 and p > 2q + 3. Let K be a filtration of simplicial complexes
satisfying (D2). Then for any given ~r, Statement A.1 holds for χ~rq.

Proof. The proof follows exactly that of Corollary A.7. Let Yn = {Yi}ni=1 be an iid sample
in Rd, with Y ′ an independent copy.

By (D2) it suffices to consider simplices within B d
√
nY ′ (φ (r)). Let

In =

n∑
i=1

1
{
‖Yi − Y ′‖ ≤ φ (r) / d

√
n
}
.
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For any a > 2, we have

χrq
(
K
(
d
√
n (Yn ∪ {Y ′})

))
− χrq

(
K
(
d
√
nYn

))
=

q∑
k=0

(−1)
k

#
{
Kr
k

(
d
√
n (Yn ∪ {Y ′})

)}
−

q∑
k=0

(−1)
k

#
{
Kr
k

(
d
√
nYn

)}
=

q∑
k=0

(−1)
k (

#
{
Kr
k

(
d
√
n (Yn ∪ {Y ′})

)}
−#

{
Kr
k

(
d
√
nYn

)})
=

q∑
k=0

(−1)
k (

#
{
Kr
k

(
d
√
n (Yn ∪ {Y ′})

)
\Kr

k

(
d
√
nYn

)})
−

q∑
k=0

(−1)
k (

#
{
Kr
k

(
d
√
nYn

)
\Kr

k

(
d
√
n (Yn ∪ {Y ′})

)})
.

Any simplices added by the inclusion of d
√
nY ′ may contain d

√
nY ′ as a vertex, and any

removed simplices must only have vertices within d
√
nYn. We bound the possible simplices

in each dimension. Thus for any a > 2∣∣χrq (K ( d√n (Yn ∪ {Y ′})
))
− χrq

(
K
(
d
√
nYn

))∣∣a
≤

(
q∑

k=0

(
In
k + 1

)
+

q∑
k=0

(
In + 1

k + 1

))a

≤

(
2

q∑
k=0

(
In + 1

k + 1

))a

≤

(
2

q∑
k=0

(In + 1)
k+1

(k + 1)!

)a

≤

(
2

q∑
k=0

(In + 1)
q+1

(k + 1)!

)a
≤ (2 (e− 1))

a
(In + 1)

a(q+1)

≤ 2a(q+2)−1 (e− 1)
a
(

1 + Ia(q+1)
n

)
.

Here R = φ (r), Ua ≤ 2a(q+2)−1 (e− 1)
a
, and ua = a (q + 1), satisfying (E2). (E1) is then

satisfied via Lemma 2.3 for p ≥ a (q + 1) + 1 > 2q+ 3. (S2) is satisfied via Lemma A.4 with
a constant radius of stabilization φ (r). (S1) is satisfied via Lemma 2.4. An application of
Theorem 2.7 gives the final result.

For the rate in Proposition 2.6, for p <∞ we have that δε = ε
p−2
p−1 up to constant factors.

Using a = (p− 1) / (q + 1) we achieve a final rate for γε of

O
(
ε
p−2
p−1 (1− 2q+2

p−1 )
)
. (A.33)

For p =∞, using a = aε = 2− log (ε) we achieve a final rate of

O

(
ε

(
− log (ε)

log (− log (ε))

)2q+2
)
. (A.34)
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Appendix B: Proofs of Main Results

B.1. Necessary Inequalities

Throughout these proofs, we will make ample use of the Hölder, Jensen, and Minkowsky
inequalities, along with the following. For brevity, these inequalities may be used implicitly
and in combination. For m ∈ N, {xi}mi=1 ⊂ R, and k ≥ 1,∣∣∣∣∣

m∑
i=1

xi

∣∣∣∣∣
k

≤ mk−1

(
m∑
i=1

|xi|k
)
. (B.1)

Likewise for 0 ≤ k ≤ 1 ∣∣∣∣∣
m∑
i=1

xi

∣∣∣∣∣
k

≤
m∑
i=1

|xi|k . (B.2)

Next, for any density f and 1 ≤ j ≤ k ≤ ∞

‖f‖jj ≤ ‖f‖
(j−1) k

k−1

k . (B.3)

Finally, for any set A ⊆ Rd with |A| the Lebesgue measure of A and k ≥ 1∣∣∣∣∫
A

f (x) dx

∣∣∣∣k ≤ |A|k−1
∫
A

|f (x)|k dx. (B.4)

Furthermore, in each of the following, we use the simplified notation

Hn (S,T) = ψ
(
d
√
nS
)
− ψ

(
d
√
nT
)

(B.5)

for the change in the statistic ψ when the underlying scaled point cloud is altered. In the
multivariate case, given ~ψ = (ψj)

k
j=1 we use the notation ~Hn (S,T) = (Hn,j (S,T))

k
j=1,

where Hn,j = ψj ( d
√
nS)− ψj ( d

√
nT).

B.2. Proofs of Section 2.2

Proposition B.1 (Proposition 2.1). For S a simple point process taking values in X
(
Rd
)
,

let ψ stabilize on S almost surely. Then ψ stabilizes on S in probability.

Proof. Let ρ be a radius of stabilization satisfying Definition 2.4. Likewise, let D∞ be a corre-
sponding terminal addition cost. For any ρ (S) ≤ l <∞, D (S ∩Bz (l)) = D (S ∩Bz (ρ (S)))
= D∞ (S). Thus {D (S ∩Bz (l)) 6= D∞ (S)} ⊆ {ρ (S) > l}, and consequently
P∗ [D (S ∩Bz (l)) 6= D∞ (S)] ≤ P∗ [ρ (S) > l]→ 0. We see that ψ stabilizes in probability on
S with terminal addition cost D∞ (S).

Proposition B.2 (Proposition 2.2). For R the space of locally-determined radii of stabi-
lization for ψ centered at z ∈ Rd, let ρ∗ : X

(
Rd
)
→ [0,∞] such that ρ∗ (S) = infρ∈R ρ (S).

Then ρ∗ is a locally determined radius of stabilization for ψ centered at z.
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Proof. If all possible radii are infinite, the result follows trivially. Else for S, T ∈ X
(
Rd
)

sup-
pose ρ∗ (S) <∞ with S∩Bz (ρ∗ (S)) = T ∩Bz (ρ∗ (S)). Since S and T have no accumulation
points, for any ε > 0 sufficiently small, we have S ∩ Bz (ρ∗ (S) + ε) = T ∩ Bz (ρ∗ (S) + ε).
There exists a locally determined radius of stabilization ρ such that ρ (S) ≤ ρ∗ (S) + ε. As
S∩Bz (ρ∗ (S) + ε) = T∩Bz (ρ∗ (S) + ε) with ρ (S) ≤ ρ∗ (S)+ε, we have that S∩Bz (ρ (S)) =
T ∩ Bz (ρ (S)). Thus ρ (S) = ρ (T ) by the local-determination criterion. Then ρ∗ (T ) ≤
ρ (T ) = ρ (S) ≤ ρ∗ (S) + ε. Since the choice of ε was arbitrary, we have ρ∗ (T ) ≤ ρ∗ (S).
Thus, S ∩Bz (ρ∗ (T )) = T ∩Bz (ρ∗ (T )). By similar arguments, ρ∗ (S) ≤ ρ∗ (T ). Combining,
ρ∗ (S) = ρ∗ (T ) must hold, and the result follows.

B.3. Proofs of Section 2.3

Lemma B.3 (Lemma 2.3). For p > 2, let ψ satisfy (E2) with ua ≤ p− 1 for some a > 2.
Then for any M <∞, ψ satisfies (E1) for Cp,M

(
Rd
)
.

Proof. Let R > 0 and a > 2 be as given such that ua ≤ p− 1. Define In :=
# {Yn ∩BY ′ (R/ d

√
n)} = #

{
( d
√
nYn) ∩B d

√
nY ′ (R)

}
. Conditional on Y ′, In follows a bi-

nomial distribution with expectation n
∫
BY ′(R/ d

√
n) g (y) dy, where g is a density of G. By

(E2), we have that

E
[∣∣ψ ( d√n (Yn ∪ {Y ′})

)
− ψ

(
d
√
nYn

)∣∣a] (B.6)

≤ E [Ua (1 + Iuan )] (B.7)

≤ Ua (1 + E [Iuan ]) . (B.8)

Via Corollary 3 in [35], there is a universal constant K such that the conditional ua-th
moment of In is at most(

K
ua

log (ua)

)ua
max

n
∫
BY ′

(
R
d√n

) g (y) dy,

n ∫
BY ′

(
R
d√n

) g (y) dy

ua
≤
(
K

ua
log (ua)

)ua n ∫
BY ′

(
R
d√n

) g (y) dy +

n∫
BY ′

(
R
d√n

) g (y) dy

ua .

Removing the conditioning on Y ′, for Vd the volume of a unit ball in Rd, we have∫
Rd
n

∫
Bx

(
R
d√n

) g (y) dy

 g (x) dx

=

∫
Rd

∫
B0(R)

g

(
x+

t
d
√
n

)
g (x) dt dx

=

∫
B0(R)

∫
Rd
g

(
x+

t
d
√
n

)
g (x) dx dt

≤ VdR
d‖g‖22

≤ VdR
d‖g‖

p
p−1
p

≤ VdR
dM

p
p−1
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and ∫
Rd

n ∫
Bx

(
R
d√n

) g (y) dy

ua

g (x) dx

=

∫
Rd

(∫
B0(R)

g

(
x+

t
d
√
n

)
dt

)ua
g (x) dx

≤
(
VdR

d
)ua−1

∫
Rd

∫
B0(R)

g

(
x+

t
d
√
n

)ua
g (x) dt dx

=
(
VdR

d
)ua−1

∫
B0(R)

∫
Rd
g

(
x+

t
d
√
n

)ua
g (x) dx dt

≤
(
VdR

d
)ua ‖g‖ua+1

ua+1

≤
(
VdR

d
)ua ‖g‖ p

p−1ua
p

≤
(
VdR

dM
p
p−1

)ua
. (B.9)

Combining, we have

E
[∣∣ψ ( d√n (Yn ∪ {Y ′})

)
− ψ

(
d
√
nYn

)∣∣a] (B.10)

≤ Ua

(
1 +

(
K

ua
log (ua)

)ua (
VdR

dM
p
p−1 +

(
VdR

dM
p
p−1

)ua))
. (B.11)

Since this bound does not depend on G or n, (E1) is satisfied by ψ for Cp,M
(
Rd
)
.

Lemma B.4 (Lemma 2.4). Let ψ satisfy (S2) for F ∈ Cp,M
(
Rd
)
. Then ψ satisfies (S1) for

Cp,M
(
Rd
)
, F , b = (p− 2) / (d (p− 1)), and any (lε)ε>0 such that limε→0 lεε

(p−2)/(d(p−1)) = 0
and limε→0 lε =∞.

Proof. Let {Xi}i∈N
iid∼ F with X ′ ∼ F an independent copy. Likewise, for G ∈ Cp,M

(
Rd
)
∩

BF (ε; dTV), let {Yi}i∈N
iid∼ G with Y ′ ∼ G an independent copy. Denote Xn := {Xi}ni=1.

As dTV (F,G) ≤ ε, it may be assumed that {(Xi, Yi)}i∈N are iid with P [Xi 6= Yi] ≤ ε for all
i ∈ N.

Let (lε)ε>0 be such that limε→0 lεε
(p−2)/(d(p−1)) = 0. Define the following sets:

AY := {Y ′ = X ′} (B.12)

BY,lε :=

{
Yn ∩BX′

(
lε
d
√
n

)
= Xn ∩BX′

(
lε
d
√
n

)}
(B.13)

Clε :=
{
ρ d
√
nX′

(
d
√
nXn

)
≤ lε

}
. (B.14)

By the local-definition criterion, Definition 2.5, we have the following inclusion:

AY ∩BY,lε ∩ CX,lε ⊆
{
ρ d
√
nY ′

(
d
√
nYn

)
≤ lε

}
.

Then

P∗
[
ρ d
√
nY ′

(
d
√
nYn

)
> lε

]
≤ P∗

[
AcY ∪BcY,lε ∪ C

c
lε

]
≤ P [AcY ] + P

[
BcY,lε

]
+ P∗

[
Cclε
]
. (B.15)
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Bounding each piece, P [AcY ] = P [X ′ 6= Y ′] ≤ ε. Likewise, by (S2) we have P∗
[
Cclε
]

=

P∗
[
ρ d
√
nX′ (

d
√
nXn) > lε

]
≤ pε, with pε not depending on G or n such that limε→0 pε = 0. It

thus remains to be shown that BcY,lε occurs with small probability, uniformly in n and G.
As in (B.48) in the proof of Proposition 2.6, the probability that Xn and Yn coincide

within BX′ (lε/ d
√
n) is at most 2M

p
p−1Vdlε

dε
p−2
p−1 . Thus we have that P

[
BcY,lε

]
≤

2M
p
p−1Vdlε

dε
p−2
p−1 . The bound does not depend on G or n, with

lim
ε→0

2M
p
p−1Vdl

d
ε ε

p−2
p−1 = 2M

p
p−1Vd

(
lim
ε→0

lεε
p−2
d(p−1)

)d
= 0. (B.16)

Finally, by the definition of a radius of stabilization we have that

P
[
D d
√
nY ′

((
d
√
nYn

)
∩B d

√
n (lε)

)
6= D d√

Y
′ (Yn)

]
(B.17)

≤ P∗
[
ρ d
√
nY ′

(
d
√
nYn

)
> lε

]
(B.18)

≤ ε+ pε + 2M
p
p−1Vdl

d
ε ε

p−2
p−1 . (B.19)

Here the final quantity does not depend on G or n, and goes to 0 as ε→ 0. Thus (S1) is
satisfied.

Lemma B.5 (Lemma 2.5). Let F ∈ Cp,M with p > 2 and M < ∞. Let ρ0 be a locally-
determined radius of stabilization for ψ centered at 0. Suppose that for any given a, b ∈
(0,∞), and δ > 0, there exists an La,b,δ <∞ and a measurable set Aa,b,δ with
ρ−1

0 ((La,b,δ,∞]) ⊆ Aa,b,δ such that

sup
λ∈[a,b]

P∗ [ρ0 (Pλ) > La,b,δ] ≤ sup
λ∈[a,b]

P [Pλ ∈ Aa,b,δ] ≤ δ. (B.20)

Then for any δ > 0 there exists an nδ <∞ and Lδ <∞ such that

sup
n≥nδ

P∗ [ρ0 (Xn −X ′) > Lδ] ≤ δ. (B.21)

Proof. We consider n ≥ n0. Define two independent sets of random variables (Ui)
∞
i=1

iid∼ F

and (U∗i )
∞
i=1

iid∼ F . ForN ∼ Pois (n), denote by Pn the Poisson process given by {Ui}Ni=1, hav-

ing intensity nf over Rd. We will couple this Poisson process to Xn. {Ui}N∨ni=1 ∪{U∗i }
(n−N)+

i=1

has the same distribution as Xn, thus we assume that the two random variables are equal. For
a given random variable Ui or U∗i and L > 0, the probability of falling within BX′ (L/ d

√
n)
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is bounded, as shown below. Applying the Cauchy-Schwartz inequality, we have∫
Rd

∫
Bx

(
L
d√n

) f (y) f (x) dy dx

=

∫
Rd

∫
B0

(
L
d√n

) f (x+ t) f (x) dt dx

=

∫
B0

(
L
d√n

)
∫
Rd
f (x+ t) f (x) dx dt

≤ VdL
d

n
‖f‖22

≤ VdL
d

n
‖f‖

p
p−1
p

≤ VdL
dM

p
p−1

n
.

The expected number of points within BX′ (L/ d
√
n) that contribute to Pn4Xn is then

at most

E

[
|N − n| VdL

dM
p
p−1

n

]
≤ VdL

dM
p
p−1

n

√
Var [N ] ≤ M

p
p−1VdL

d

√
n

. (B.22)

As the number of differing points is an integer-valued random variable, this expectation
bounds the probability that Xn and Pn differ within BX′ (L/ d

√
n). For a fixed value of L

and sufficiently large n, the bound can be made arbitrarily small.
Next, we will couple the Poisson process Pn with a conditionally homogeneous approxima-

tion. We construct the following coupling: Let T be a homogeneous Poisson process on Rd×
[0,∞) with unit intensity. The point process given by {Ui s.t. (Ui, Ti) ∈ T, Ti ≤ nf (Ui)} is
then a nonhomogeneous Poisson process with intensity nf . We can safely assume that this
process equals Pn. Define the point process Hn := {Ui s.t. (Ui, Ti) ∈ T and Ti ≤ nf (X ′)}.

Conditional on X ′, Hn is a homogeneous Poisson process with intensity nf (X ′). The
number of observations within BX′ (L/ d

√
n) that contribute to Pn4Hn follows a Poisson

distribution with rate parameter∫
BX′

(
L
d√n

) |nf (y)− nf (X ′)| dy (B.23)

Removing the conditioning on X ′, the expected number is∫
Rd

n ∫
Bx

(
L
d√n

) |f (y)− f (x)| dy

 f (x) dx (B.24)

As the expectation above is an upper bound for the probability that Pn and Hn fail
to coincide within BX′ (L/ d

√
n), we show that this quantity can be made arbitrarily small.

Consider C, the set of Lebesgue points of f . We have that Cc has Lebesgue measure 0 by
the Lebesgue differentiation theorem. By the definition of a Lebesgue point, we may write

C =
⋂
γ>0

⋃
∆>0

⋂
δ≤∆

{
x ∈ R s.t.

∫
Bx(δ)

|f (y)− f (x)| dy

Vdδd
≤ γ

}
(B.25)
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Here Vd denotes the volume of a unit ball in Rd. Now as f is a density, it may be shown
that

∫
Bx(δ)

|f (y)− f (x)| dy/Vdδ
d is a jointly continuous function of x and δ, and therefore

it is measurable. Via the continuity with respect to δ, we need only consider rational δ ≤ ∆,
because the rationals are dense in the reals. Thus,

C∆,γ :=
⋂
δ≤∆

{
x ∈ R s.t.

∫
Bx(δ)

|f (y)− f (x)| dy

Vdδd
≤ γ

}

is a countable intersection of measurable sets. Finally, by the Archimedean principle and
other standard calculus arguments, we may assume γ and ∆ also come from a countable
class, {1/n : n ∈ N}, for example. Let Cγ := ∪∆>0C∆,γ . We have that Cδ,γ and Cγ are
measurable with lim∆→0 C

c
δ,γ = Ccγ and limγ→0 C

c
γ = Cc. By continuity of measure, the

Lebesgue measure of Ccγ must go to 0, as well for
∫
Ccγ
f (x) dx. We decompose the integral

in (B.24) as follows. For any integer 1 < a ≤ p − 1, an application of Hölder’s inequality
gives

∫
Rd

n ∫
Bx

(
L
d√n

) |f (y)− f (x)| dy

 f (x) dx

=

∫
Rd

n ∫
Bx

(
L
d√n

) |f (y)− f (x)| dy

 f (x)1

{
x ∈ C L

d√n
,γ

}
f (x) dx

+

∫
Rd

n ∫
Bx

(
L
d√n

) |f (y)− f (x)| dy

 f (x)1

{
x ∈ CcL

d√n
,γ

}
f (x) dx

≤ γVdL
d (B.26)

+

(∫
Rd

(∫
B0(L)

∣∣∣∣f (x+
t
d
√
n

)
− f (x)

∣∣∣∣ dt

)a
f (x) dx

) 1
a

P
[
X ′ ∈ CcL

d√n
,γ

]1− 1
a

.

For the integral above∫
Rd

(∫
B0(L)

∣∣∣∣f (x+
t
d
√
n

)
− f (x)

∣∣∣∣ dt

)a
f (x) dx

≤
(
VdL

d
)a−1

∫
Rd

∫
B0(L)

∣∣∣∣f (x+
t
d
√
n

)
− f (x)

∣∣∣∣a f (x) dt dx

=
(
VdL

d
)a−1

∫
B0(L)

∫
Rd

∣∣∣∣f (x+
t
d
√
n

)
− f (x)

∣∣∣∣a f (x) dt dx

≤ 2a−1
(
VdL

d
)a−1

∫
B0(L)

∫
Rd

(
f

(
x+

t
d
√
n

)a
+ f (x)

a

)
f (x) dt dx

≤
(
2VdL

d
)a ‖f‖a+1

a+1

≤
(
2VdL

d
)a ‖f‖ p

p−1a
p

≤
(

2VdL
dM

p
p−1

)a
.
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Thus (B.26) is at most

γVdL
d + 2VdL

dM
p
p−1P

[
X ′ ∈ CcL

d√n
,γ

]1− 1
a

(B.27)

≤ γVdL
d + 2VdL

dM
p
p−1P

[
X ′ ∈ CcL

d√n
,γ

] p−2
p−1

. (B.28)

This provides a bound for the probability that Pn and Hn fail to coincide withinBX′ (L/ d
√
n).

The bound holds in the limiting p = ∞ case and can be made arbitrarily small for γ suffi-
ciently small and n sufficiently large. γ can be chosen as a function of F , L, and n to provide
the tightest bound, but this requires specific knowledge of f . Combining with the previous
steps, we have coupled Xn and Hn to be equal with arbitrarily high probability.

Now for η, ζ > 0 define D∗,η = f−1 ([η,∞)) and D∗ζ = f−1 ([0, ζ]). For η sufficiently small

and ζ sufficiently large, P
[
X ′ ∈ Dc

∗,η
]

and P
[
X ′ ∈ D∗ζ

c
]

can be made arbitrarily small.

By assumption, for any given η, ζ, and ν > 0 there is an Lη,ζ,ν and a measurable set Aη,ζ,ν
such that for any homogenous Poisson process Qλ on Rd with intensity λ bounded between η
and ζ, be have (ρ0)

−1
((Lη,ζ,ν ,∞]) ⊆ Aη,ζ,ν and P∗ [ρ0 (Qλ) > Lη,ζ,ν ] ≤ P [Qλ ∈ Aη,ζ,ν ] ≤ ν.

Lη,ζ,ν is possibly increasing as η → 0, ζ →∞, and ν → 0.
As d
√
n (Hn −X ′) is a homogeneous Poisson process, conditional on X ′, ∈ D∗,η ∪D∗ζ , we

have

P∗
[
ρ0

(
d
√
n (Hn −X ′)

)
> Lη,ζ,ν

∣∣ X ′ ∈ D∗,η ∪D∗ζ] (B.29)

≤ P
[
d
√
n (Hn −X ′) ∈ Aη,ζ,ν

∣∣ X ′ ∈ D∗,η ∪D∗ζ] (B.30)

= E
[
P
[
d
√
n (Hn −X ′) ∈ Aη,ζ,ν |X ′

] ∣∣ X ′ ∈ D∗,η ∪D∗ζ] (B.31)

≤ ν. (B.32)

Combining the pieces and letting L = Lη,ζ,ν , we have that

P∗ [ρ0 (Xn −X ′) > Lη,ζ,ν ] (B.33)

= P∗
[
ρ0 (Hn −X ′) > Lη,ζ,ν |X ′ ∈ A∗,η ∪A∗ζ

]
P
[
X ′ ∈ D∗,η ∪D∗ζ

]
(B.34)

+ P [Xn ∩BX′ (Lη,ζ,ν) 6= Pn ∩BX′ (Lη,ζ,ν)] (B.35)

+ P [Pn ∩BX′ (Lη,ζ,ν) 6= Hn ∩BX′ (Lη,ζ,ν)] + P
[
X ′ ∈ Dc

∗,η
]

+ P
[
X ′ ∈ D∗ζ

c] (B.36)

≤ ν +
M

p
p−1VdL

d
η,ζ,ν√

n
+ γVdL

d
η,ζ,ν + 2VdL

d
η,ζ,νM

p
p−1P

[
X ′ ∈ CcLη,ζ,ν

d√n
,γ

] p−2
p−1

(B.37)

+ P
[
X ′ ∈ Dc

∗,η
]

+ P
[
X ′ ∈ D∗ζ

c] . (B.38)

As η, ν → 0 and ζ →∞, Lη,ζ,ν can become unbounded. Let γ → 0 and choose n0 suitably
large to ensure that the entire expression goes to 0. The result follows.
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Proposition B.6 (Proposition 2.6). For p > 2 and M < ∞, let ψ satisfy (E1) and (S1)
for Cp,M

(
Rd
)
, F ∈ Cp,M

(
Rd
)
, and some a > 2. Then for any G ∈ Cp,M

(
Rd
)
∩BF (ε, dTV),

there exist iid coupled random variables ((Xi, Yi))i∈N such that Xn = {Xi}ni=1
iid∼ F , Yn =

{Yi}ni=1
iid∼ G, and

sup
n∈N

Var

[
1√
n

(
ψ
(
d
√
nXn

)
− ψ

(
d
√
nYn

))]
≤ γε. (B.39)

The value γε does not depend on G and satisfies limε→0 γε = 0.

Proof. We refer to Appendix B.1 for a reference list of the general inequalities used here.
Our proof technique is inspired by that of Proposition 5.4 in [31]. We expand using a

martingale difference sequence (MDS). Let {(Xi, Yi)}∞i=1 be iid such that {Xi}∞i=1
iid∼ F

and {Yi}∞i=1
iid∼ G. Each pair (Xi, Yi) can be identically coupled such that P [Xi 6= Yi] =

dTV (F,G) ≤ ε. For Xj := {Xi}ji=1, Yj := {Yi}ji=1, and σ denoting a generated sigma
algebra, let Fj := σ {Xj ,Yj} with F0 := {Ω, ∅}. For (X ′, Y ′) an independent copy of the
(Xi, Yi), let

X′n,j := {X1, ..., Xj−1, X
′, Xj+1, ..., Xn}

Y′n,j := {Y1, ..., Yj−1, Y
′, Yj+1, ..., Yn} .

We apply the condensed notation Hn (S,T) = ψ ( d
√
nS) − ψ ( d

√
nT). Using the orthogo-

nality of a MDS and the conditional version of Jensen’s inequality,

Var

[
1√
n
Hn (Xn,Yn)

]
(B.40)

=
1

n
E


∣∣∣∣∣∣
n∑
j=1

E [Hn (Xn,Yn) |Fj ]− E
[
Hn (Xn,Yn)

∣∣Fj−1

]∣∣∣∣∣∣
2


=
1

n
E


∣∣∣∣∣∣
n∑
j=1

E
[
Hn (Xn,Yn)−Hn

(
X′n,j ,Y

′
n,j

) ∣∣Fj]
∣∣∣∣∣∣
2


=
1

n

n∑
j=1

E
[
E
[
Hn (Xn,Yn)−Hn

(
X′n,j ,Y

′
n,j

) ∣∣Fj]2]
≤ E

[∣∣Hn (Xn,Yn)−Hn

(
X′n,j ,Y

′
n,j

)∣∣2] . (B.41)

The above holds for any 1 ≤ j ≤ n. We have an upper bound for (B.41) of

2E
[
|Hn (Xn ∪X ′,Xn)−Hn (Yn ∪ Y ′,Yn)|2

]
+ 2E

[∣∣Hn

(
Xn ∪X ′,X′n,j

)
−Hn

(
Yn ∪ Y ′,Y′n,j

)∣∣2]
= 4E

[
|Hn (Xn ∪X ′,Xn)−Hn (Yn ∪ Y ′,Yn)|2

]
. (B.42)
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We will decompose the expectation in (B.42) using the stabilization of ψ. Let L > 0,
and define the following sets. Note that when all four are satisfied, Hn (Xn ∪X ′,Xn) =
Hn (Yn ∪ Y ′,Yn).

AY := {Y ′ = X ′} (B.43)

BY,L :=

{
Yn ∩BX′

(
L
d
√
n

)
= Xn ∩BX′

(
L
d
√
n

)}
(B.44)

CX,L :=
{
D∞d√nX′

((
d
√
nXn

)
∩B d

√
nX′ (L)

)
= D d

√
nX′

(
d
√
nXn

)}
(B.45)

CY,L :=
{
D∞d√nY ′

((
d
√
nYn

)
∩B d

√
nY ′ (L)

)
= D d

√
nY ′

(
d
√
nYn

)}
. (B.46)

Let CX,L∗ ⊆ CX,L and CY,L∗ ⊆ CY,L be measurable. We decompose the expectation in
(B.42) along these events into

E
[
|Hn (Xn ∪X ′,Xn)−Hn (Yn ∪ Y ′,Yn)|2 1 {AY ∩BY,L ∩ CX,L∗ ∩ CY,L∗}

]
+ E

[
|Hn (Xn ∪X ′,Xn)−Hn (Yn ∪ Y ′,Yn)|2 1

{
AcY ∪BcY,L ∪ CcX,L∗ ∪ CcY,L∗

}]
= E

[
|Hn (Xn ∪X ′,Xn)−Hn (Yn ∪ Y ′,Yn)|2 1

{
AcY ∪BcY,L ∪ CcX,L∗ ∪ CcY,L∗

}]
.

Let a > 2 satisfy (E1). Hölder’s inequality gives an upper bound of∣∣∣∣∣∣|Hn (Xn ∪X ′,Xn)−Hn (Yn ∪ Y ′,Yn)|2
∣∣∣∣∣∣
a
2

P
[
AcY ∪BcY,L ∪ CcX,L∗ ∪ CcY,L∗

]1− 2
a .

As the choice of CX,L∗ and CY,L∗ was arbitrary, the expectation in (B.42) is at most∣∣∣∣∣∣|Hn (Xn ∪X ′,Xn)−Hn (Yn ∪ Y ′,Yn)|2
∣∣∣∣∣∣
a
2

P∗
[
AcY ∪BcY,L ∪ CcX,L ∪ CcY,L

]1− 2
a

≤
∣∣∣∣∣∣|Hn (Xn ∪X ′,Xn)−Hn (Yn ∪ Y ′,Yn)|2

∣∣∣∣∣∣
a
2

×max
{
P [AcY ] + P

[
BcY,L

]
+ P∗

[
CcX,L

]
+ P∗

[
CcY,L

]
, 1
}1− 2

a .

Consider the norm in the final expression above. We have an upper bound of

2

(∣∣∣∣∣∣Hn (Xn ∪X ′,Xn)
2
∣∣∣∣∣∣
a
2

+
∣∣∣∣∣∣Hn (Yn ∪ Y ′,Yn)

2
∣∣∣∣∣∣
a
2

)
≤ 4E

2
a
a . (B.47)

This final quantity does not depend on ε, G, or n. It thus remains to show that, for a
certain choice of L and as ε→ 0, that each of the events AcY , BcY,L, CcX,L, and CcY,L can be
made to occur with small outer probability, uniformly in G and n. For Ac, this is satisfied
because P [X ′ 6= Y ′] ≤ ε.

We then consider BcY,L. The sample pairs which contribute to Xn ∩BX′ (L/ d
√
n) but not

Yn ∩ BX′ (L/ d
√
n) are those (Xi, Yi) for which Xi 6= Yi and either ‖Xi − X ′‖ ≤ L/ d

√
n or

‖Yi −X ′‖ ≤ L/ d
√
n. Conditional on X ′, their count follows a binomial distribution with ex-

pectation at most nP [Xi 6= Yi]
∫
BX′(L/ d

√
n) f̃ (y)+ g̃ (y) dy. Here f̃ and g̃ are the densities of

Xi and Yi conditional on the event {Xi 6= Yi}. These densities can be shown to exist via the
absolute continuity of F and G with respect to the Lebesgue measure on Rd. Subsequently,
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we have that ‖f̃‖p ≤ ‖f‖p/P [Xi 6= Yi] ≤ M/P [Xi 6= Yi] and ‖g̃‖p ≤ M/P [Xi 6= Yi]. Re-
moving the conditioning on X ′, via Hölder’s inequality the expected number of pairs which
contribute to Xn4Yn within BX′ (L/ d

√
n) is at most

∫
Rd

nP [Xi 6= Yi]

∫
Bx

(
L
d√n

) f̃ (y) + g̃ (y) dy

 f (x) dx

= P [Xi 6= Yi]

∫
Rd

∫
B0(L)

(
f̃

(
x+

t
d
√
n

)
+ g̃

(
x+

t
d
√
n

))
f (x) dt dx

= P [Xi 6= Yi]

∫
B0(L)

∫
Rd

(
f̃

(
x+

t
d
√
n

)
+ g̃

(
x+

t
d
√
n

))
f (x) dx dt

≤ P [Xi 6= Yi]VdL
d
(
‖f̃‖ p

p−1
+ ‖g̃‖ p

p−1

)
‖f‖p

≤ 2P [Xi 6= Yi]MVdL
d

(
M

P [Xi 6= Yi]

) 1
p−1

≤ 2M
p
p−1VdL

dε
p−2
p−1 . (B.48)

This final expression provides an upper bound on P
[
BcY,L

]
. Let (lε)ε>0 satisfy (S1) and

L = lε. We have that P
[
BcY,lε

]
≤ 2M

p
p−1Vdlε

dε
p−2
p−1 → 0. By (S1), both P∗

[
CcX,lε

]
and

P∗
[
CcY,lε

]
are bounded above by a quantity pε such that limε→0 pε = 0.

Let δε = min
{
ε+ 2M

p
p−1Vdlε

dε
p−2
p−1 + 2pε, 1

}
be the derived upper bound for

P∗
[
AcY ∪BcY,lε ∪ C

c
X,lε
∪ CcY,lε

]
. We achieve a final upper bound for (B.40) of

16E
2
a
a δ

1− 2
a

ε . (B.49)

If (S1) is satisfied for many (lε)ε>0 such that limε→0 lεε
(p−2)/(d(p−1)) = 0, lε can be further

chosen to optimize the rate of δε, provided a rate for pε. Furthermore, if (E1) is satisfied
for more than one a > 2, a = aε may be chosen to optimize the final rate as ε → 0.
Such considerations depend on the specifics of the statistic ψ and the density assumptions
used.
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B.4. Proofs of Section 2.4

Theorem B.7 (Theorem 2.7). Let F ∈ P
(
Rd
)

with density f such that ‖f‖p <∞ for some

p > 2. Furthermore, let F and f̂n be such that ‖f̂n−f‖1 → 0 and ‖f̂n−f‖p → 0 in probability

(resp. a.s.). Suppose ~ψ : X̃
(
Rd
)
→ Rk has component functions ψj : X̃

(
Rd
)
→ R, 1 ≤ j ≤ k

satisfying (E1) and (S1) for Cp,M
(
Rd
)
, M > ‖f‖p, F , and b = (p− 2) / (d (p− 1)). Then

for a sample Xn = {Xi}ni=1
iid∼ F , (mn)n∈N such that limn→∞mn =∞, a bootstrap sample

X∗mn = {X∗i }
mn
i=1

iid∼ F̂n|Xn, and a multivariate distribution G,

1√
n

(
~ψ
(
d
√
nXn

)
− E

[
~ψ
(
d
√
nXn

)]) d→ G

if and only if

1
√
mn

(
~ψ
(
d
√
mnX∗mn

)
− E

[
~ψ
(
d
√
mnX∗mn

) ∣∣Xn

])
d→ G in probability (resp. a.s.).

Proof. For any bounded, Lipschitz function v : Rk → R, consider the functional given by

Vmn := E
[
v
(
~Hmn (Ymn)

)]
, where Ymn = {Yi}mni=1 is an iid sample, and the functional

takes as input the shared distribution of the Yi. Let v be bounded within [−L,L] with a

Lipschitz constant of L. First assuming that ~Hn (Xn)
d→ G, we have Vn (F )→

∫
R v dG.

Now, let X′mn =
{
X ′mn,i

}mn
i=1

iid∼ F be an independent copy of Xmn = {Xi}mni=1. Further-
more, as in the proof of Proposition 2.6, X′mn and X∗mn can be coupled so that

P
[
X ′mn,i 6= X∗i

]
= dTV

(
F, F̂n

)
= ‖f̂n− f‖1/2, conditional on Xn. Via Proposition 2.6 and
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Chebyshev’s inequality, for δ > 0 we have almost surely that

Vmn

(
F̂n

)
= E

[
v
(
~Hmn

(
X∗mn

)) ∣∣Xn

]
= E

[
v
(
~Hmn

(
X∗mn

))
1

{
‖ ~Hmn

(
X∗mn

)
− ~Hmn

(
X′mn

)
‖ ≤ δ

} ∣∣Xn

]
+ E

[
v
(
~Hmn

(
X∗mn

))
1

{
‖ ~Hmn

(
X∗mn

)
− ~Hmn

(
X′mn

)
‖ > δ

} ∣∣Xn

]
≤ E

[
v
(
~Hmn

(
X′mn

))
+ Lδ

∣∣Xn

]
+ L (2− δ)

mn∑
j=1

P
[∣∣Hmn,j

(
X∗mn

)
−Hmn,j

(
X′mn

)∣∣ > δ√
k

∣∣Xn

]
≤ E

[
v
(
~Hmn

(
X′mn

))
+ Lδ

∣∣Xn

]
+ L (2− δ)

 k∑
j=1

P
[∣∣Hmn,j

(
X∗mn

)
−Hmn,j

(
X′mn

)∣∣ > δ√
k

∣∣Xn

]1

{
‖f̂n‖p ≤M

}
+ L (2− δ)1

{
‖f̂n‖p > M

}
≤ E

[
v
(
~Hmn

(
X′mn

))]
+ Lδ

+ L (2− δ)

 k∑
j=1

kγ‖f̂n−f‖1/2,j

δ2

1

{
‖f̂n‖p ≤M

}
+ 1

{
‖f̂n‖p > M

} .

Here γ‖f̂n−f‖1/2,j is as given in Proposition 2.6 applied to ψj for ε = ‖f̂n−f‖1/2. Similarly,
almost surely

Vmn

(
F̂n

)
(B.50)

≥ E
[
v
(
~Hmn

(
X′mn

))]
− Lδ (B.51)

− L (2− δ)

((
k∑
i=1

kγ‖f̂n−f‖1/2,j

δ2

)
1

{
‖f̂n‖p ≤M

}
+ 1

{
‖f̂n‖p > M

})
. (B.52)

As ‖f̂n− f‖p → 0 and M > ‖f‖p, we have that the lower bound for Vmn

(
F̂n

)
converges

to
∫
R v dG−Lδ and the upper bound converges to

∫
R v dG+Lδ, either in probability or a.s.,

depending on assumptions. Since this holds for any δ > 0, we have that Vmn

(
F̂n

)
→
∫
R v dG

in probability (or a.s.).
Now we will show the converse direction. Let X∗mn and X′mn be as previously defined.
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We have

Vmn (F )

= E
[
E
[
v
(
~Hmn

(
X′mn

)) ∣∣Xn

]]
≤ E

[
E
[
v
(
~Hmn

(
X∗mn

)) ∣∣Xn

]]
+ Lδ

+ L (2− δ)E

[
min

{
k∑
i=1

kγ‖f̂n−f‖1/2,j

δ2
, 1

}
1

{
‖f̂n‖p ≤M

}
+ 1

{
‖f̂n|p > M

}]
and

Vmn (F )

≥ E
[
E
[
v
(
~Hmn

(
X∗mn

)) ∣∣Xn

]]
− Lδ

− L (2− δ)E

[
min

{
k∑
i=1

kγ‖f̂n−f‖1/2,j

δ2
, 1

}
1

{
‖f̂n‖p ≤M

}
+ 1

{
‖f̂n‖p > M

}]
.

Each expectation involves only bounded random variables, thus the lower bound converges

to
∫
R v dG−Lδ and the upper bound to

∫
R v dG+Lδ, assuming E

[
v
(
~Hmn

(
X∗mn

)) ∣∣Xn

]
→∫

R v dG. This holds if the assumed convergence is either in probability or almost sure. Since
this holds for any δ > 0, we have Vmn (F ) →

∫
R v dG. Since our initial choice of v was

arbitrary, the desired result follows.

B.5. Proofs of Section 4.3

Lemma B.8 (Lemma 4.1). Let F ∈ Cp,M
(
Rd
)

for some p > 2 and M < ∞, and let
K = {Kr}r∈R be a filtration of simplicial complexes satisfying (K2), (D2), and (D3). Then
for any r ∈ R, s ∈ R, and q ≥ 0, βr,sq (K) satisfies (S2) for F .

Proof. We start by defining a crude locally-determined radius of stabilization. Let K be
either Kr or Ks. Denote φ = max {φ (r) , φ (s)} as given by (D2). For z ∈ Rd, S ∈ X

(
Rd
)
,

and a > φ, consider the connected components in K (S ∩Bz (a)) and K ((S ∩Bz (a)) ∪ {z})
with at least one simplex entirely contained within Bz (φ). By (D2), if these components
are entirely contained within Bz (a− φ), no simplices will be added or removed from them
within K (S ∩Bz (b)) or K ((S ∩Bz (b)) ∪ {z}) for any b > a. This property holds for both
Ks or Kr. The persistent Betti numbers are additive with respect to connected components,
thus the add-z cost is entirely defined by those components altered by the inclusion of z,
which necessarily must include one simplex within Bz (φ). As such, a is a locally determined
radius of stabilization for S in this case. Any changes to the simplices outside of a must
contribute to different connected components, and thus do not influence the add-z cost.

Now, Xn contains n total points. Including one point within Bz (φ), the longest possible
chain of n connected points reaches at most a radius of nφ. Therefore, ρ d

√
nX′ (

d
√
nXn) =

(n+ 1)φ is a locally-determined radius of stabilization on d
√
nXn centered at d

√
nX ′, as

shown in the previous paragraph. However, since this radius grows with n, it alone cannot
provide for the desired result.

Given (D2) and (D3), by Theorem 4.3 in [31] and the proof thereof, there exists a locally-
determined radius of stabilization ρ∗0 for βr,sq (K) centered at 0 such that the conditions of
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Lemma 2.5 are satisfied. It must be noted that the original statement of the referenced
lemma does not give this result directly. However, a careful analysis of the provided proof
yields this more general result with minimal additions, and is not restated here. By (K2), we
may define a radius of stabilization ρ∗z for βr,sq centered at z ∈ Rd with ρ∗z (S) = ρ∗0 (S − z).
Thus, for any δ > 0, there exists an Lδ <∞ and nδ <∞ such that P

[
ρ∗d√nX′ (

d
√
nXn)

]
≤ δ

for all n ≥ Nδ.
Denote by Pz (S) the union of all connected components in either K (S) or K (S ∪ {0})

with at least one simplex entirely contained within Bz (φ). For any center point z ∈ Rd,
define ρz : X → [0,∞] with ρz (S) = min {diam (Pz (S)) + φ, ρ∗ (S − z)}. We have that ρz
is a locally-determined radius of stabilization.

For n < nδ, we have that ρ d
√
nX′ (

d
√
nXn) ≤ (nδ + 1)φ almost surely. For n ≥ nδ,

ρ d
√
nX′ (

d
√
nXn) ≤ ρ∗d√nX′ (

d
√
nXn) ≤ Lδ with probability at least 1− δ. Therefore

supn∈N P
[
ρ d
√
nX′ (

d
√
nXn) > max {Lδ, (nδ + 1)φ}

]
≤ δ, and the result follows.

B.6. Proofs of Section 4.4

Corollary B.9 (Corollary 4.2). Let q ≥ 0 and p > 2q+ 3. Let K be a filtration of simplicial
complexes satisfying (K1), (K2), (D1), and (D3). Then for any given ~r, ~s, Statement 4.1
holds for β~r,~sq .

Proof. For given r, s ∈ R, we will verify that assumption (E2) is satisfied for ψ = βr,sq (K).
Let Yn = {Yi}ni=1 be iid and Y ′ an independent copy. By the Geometric Lemma 3.1, a
bound for the change in persistent Betti numbers when { d

√
nY ′} is added to d

√
nYn is given

by the number of new simplices introduced to the corresponding complexes. By (K1), (D1),
it suffices to count the number of points within φ := max {φ (r) , φ (s)} of d

√
nY ′, the combi-

nations of which include any possible new simplices. Let In =
∑n
i=1 1 {‖Yi − Y ′‖ ≤ φ/ d

√
n}.

For any a > 2 we have∣∣βr,sq (
K
(
d
√
n (Yn ∪ {Y ′})

))
− βr,sq

(
K
(
d
√
nYn

))∣∣a
≤
∣∣#{Kr

q

(
d
√
n (Yn ∪ {Y ′})

)
\Kr

q

(
d
√
nYn

)}
+ #

{
Ks
q+1

(
d
√
n (Yn ∪ {Y ′})

)
\Ks

q+1

(
d
√
nYn

)} ∣∣a
≤
∣∣∣∣(Inq

)
+

(
In
q + 1

)∣∣∣∣a
=

(
In + 1

q + 1

)a
≤ 1

((q + 1)!)
a (In + 1)

a(q+1)

≤ 2a(q+1)−1

((q + 1)!)
a

(
Ia(q+1)
n + 1

)
.

In this case R = φ, Ua ≤ 2a(q+1)−1/ ((q + 1)!)
a

and ua = a (q + 1). (E1) then follows from
Lemma 2.3 for p ≥ a (q + 1) + 1 > 2q + 3. As (K1) and (D1) together imply (D2), (S2) is
satisfied as shown in Lemma 4.1. Then (S1) follows from Lemma 2.4. Finally an application
of Theorem 2.7 gives the desired result.
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Referring to Proposition 2.6 and the proof thereof, for p <∞, using a = (p− 1) / (q + 1)
we achieve an optimal rate for γε of

O

(
δ

1− 2q+2
p−1

ε

)
. (B.53)

Details of the calculation are omitted here. For p = ∞, using a = aε = 2 − log (δε) we
achieve an optimal rate of

O

(
δε

(
− log (δε)

log (− log (δε))

)2q+2
)
. (B.54)

Both of these rates depend on δε, the upper bound for the total probability found in the
proof of Proposition 2.6. The techniques found in the proofs of Lemma 2.3 and Proposi-
tion 2.6 allow for a bound on δε, provided a tail bound for supn∈N ρ0 ( d

√
n (Yn − Y ′)). At

this time, such a bound is unavailable, thus no explicit rate calculation is possible.

Corollary B.10 (Corollary 4.3). Let q ≥ 0 and p > 2q+5. Let K be a filtration of simplicial
complexes satisfying (K2), (D2), and (D3). Then for any given ~r, ~s, Statement 4.1 holds
for β~r,~sq .

Proof. The proof follows exactly that of Corollary 4.2, thus we will omit many replicated
details. Let Yn = {Yi}ni=1 be iid and Y ′ an independent copy. Define φ := max {φ (r) , φ (s)}.

Since we do not assume (K1) in this case, the addition of d
√
nY ′ to the complex may both

add and remove simplices, but only within B d
√
nY ′ (φ) by (D2). Any additional simplices

may have d
√
nY ′ as a vertex, whereas any removed simplices may only have vertices within

d
√
nYn. For In =

∑n
i=1 1 {‖Yi − Y ′‖ ≤ φ/ d

√
n}, via the Geometric Lemma 3.1 we have∣∣βr,sq (

K
(
d
√
n (Yn ∪ {Y ′})

))
− βr,sq

(
K
(
d
√
nYn

))∣∣
≤
∣∣βr,sq (

K
(
d
√
n (Yn ∪ {Y ′})

)
∪ K

(
d
√
nYn

))
− βr,sq

(
K
(
d
√
n (Yn ∪ {Y ′})

))∣∣
+
∣∣βr,sq (

K
(
d
√
n (Yn ∪ {Y ′})

)
∪ K

(
d
√
nYn

))
− βr,sq

(
K
(
d
√
nYn

))∣∣
≤ #

{
Kr
q

(
d
√
nYn

)
\Kr

q

(
d
√
n (Yn ∪ {Y ′})

)}
+ #

{
Ks
q+1

(
d
√
nYn

)
\Ks

q+1

(
d
√
n (Yn ∪ {Y ′})

)}
+ #

{
Kr
q

(
d
√
n (Yn ∪ {Y ′})

)
\Kr

q

(
d
√
nYn

)}
+ #

{
Ks
q+1

(
d
√
n (Yn ∪ {Y ′})

)
\Ks

q+1

(
d
√
nYn

)}
≤
(

In
q + 1

)
+

(
In
q + 2

)
+

(
In + 1

q + 1

)
+

(
In + 1

q + 2

)
≤ 2

(
In + 2

q + 2

)
≤ 2q+3

(q + 2)!
(In + 1)

q+2
.

Thus for any a > 2,

∣∣βr,sq (
K
(
d
√
n (Yn ∪ {Y ′})

))
− βr,sq

(
K
(
d
√
nYn

))∣∣a ≤ 2(a+1)(q+2)

((q + 2)!)
a

(
Ia(q+2)
n + 1

)
.
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(E2) is satisfied for R = φ, Ua =
(
2(a+1)(q+2)

)
/((q + 2)!)

a
, and ua = a (q + 2). Thus for

p ≥ a (q + 2) + 1 > 2q + 5, (E1) follows by Lemma 2.3. (S2) and thus (S1) follow from
Lemmas 4.1 and 2.4, respectively. An application of Theorem 2.7 gives the final result.

For the rate in Proposition 2.6, for p < ∞, using a = (p− 1) / (q + 2) we achieve an
optimal rate for γε of

O

(
δ

1− 2q+4
p−1

ε

)
. (B.55)

For p =∞, using aε = 2− log (δε) we achieve an optimal rate of

O

(
δε

(
− log (δε)

log (− log (δε))

)2q+4
)
. (B.56)

Corollary B.11 (Corollary 4.4). Let m < ∞ and p > 2m + 3. Let K be a filtration of
simplicial complexes satisfying (K1), (K2), (D1), (D3), and (D4). Then for any given ~r,
Statement 4.1 holds for χ~r.

Corollary B.12 (Corollary 4.5). Let m <∞ and p > 2m+5. Let K be a filtration of simpli-
cial complexes satisfying (K2), (D2), (D3), and (D4). Then for any given ~r, Statement 4.1
holds for χ~r.

Proof. We prove together Corollaries 4.4 and 4.5. Recall that the Euler characteristic χ
can be written as an alternating (finite) sum of the Betti numbers when (D4) holds. As
mentioned after the proposition statement, since Proposition 2.6 holds for the Betti numbers
in dimensions 0 ≤ q ≤ m under the assumed conditions (see the proofs of Corollaries 4.2
and 4.3), then the same holds for their (alternating) sum, namely the Euler characteristic.
The proof of Theorem 2.7 applies without alteration.

Corollary B.13 (Corollary 4.6). Let p > 2. Furthermore, let F ∈ Dγ,r0 (C) and

1

{
F̂n ∈ Dγ,r0 (C)

}
→ 1 in probability (resp. a.s.). Then Statement 4.1 holds for lNN,k.

Proof. First, we will show that E
[
|lNN,k ( d

√
n (Yn ∪ {Y ′}))− lNN,k ( d

√
nYn)|a

]
is uniformly

bounded for G ∈ Dγ,r0 (C) and Y ′, Y1, ..., Yn
iid∼ G. Denote by Ak+1 the k + 1 nearest

neighbors of d
√
nY ′ in d

√
nYn. Denote by Bk the set of points in d

√
nYn for which d

√
nY ′ is

among the k nearest neighbors.
It may be shown that # {Bk} ≤ Cd,k, where Cd,k is a constant depending only on

the dimension d and k. To show this, consider a cone of angle π/6 whose point lies on
d
√
nY ′. For y1, ..., yk the k closest points of Bk to d

√
nY ′ within the cone, it follows from

basic geometric arguments that any point lying within the cone, but outside a radius of

max {‖yi − d
√
nY ′‖}ki=1 from d

√
nY ′ must be closer to each of y1, ..., yk than to d

√
nY ′. Thus,

any cone of this type may contain at most k points of Bn. Since Rd may be covered by
finitely many of these cones, there must exist the required bound Cd,k.

Now, consider the points of Ak+1 and Bk. Let Rk+1,n := max {‖y − d
√
nY ′‖ : y ∈ An}.

For any point y in Bn, the distance to each point of An is at most ‖y − d
√
nY ′‖ + Rk+1,n

by the triangle inequality. In this case, the introduction of d
√
nY ′ to the sample may reduce

the contribution to lNN,k from the points in Bn by at most

lNN,k

(
d
√
nYn

)
− lNN,k

(
d
√
n (Yn ∪ {Y ′})

)
≤ Cd,kRk+1,n.
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Likewise, the contribution of d
√
nY ′ is bounded by

lNN,k

(
d
√
n (Yn ∪ {Y ′})

)
− lNN,k

(
d
√
nYn

)
≤ kRk,n ≤ kRk+1,n.

Thus, we proceed by bounding E
[
Rak+1,n

]
. For any G ∈ Dγ,r0

E

 ∞∫
r0

P
[
‖Yj − Y ′‖ > a

√
r
∣∣ Y ′]n dr

 ≤ diam (C)
(

1− γr
d
a
0

)n
.

We apply a bound similar to Theorem 7 in [47]. In the statement of the referenced
theorem, it is assumed that the above quantity is bounded by CT /n for an appropriate
constant CT . Here, we may improve that to an exponential bound. Consequently, we have

E
[
Rak+1,n

]
≤
(
k + 1

γ

) a
d

+ diam (C)n
a
d

(
1− γr

d
a
0

)n
+
a (e/ (k + 1))

k+1

d (γ)
a
d

∞∫
k+1

e−yyk+ a
d dy.

(B.57)

For any a <∞, this quantity limits to a constant with n→∞, thus admitting a constant
upper bound which holds for all n ∈ N, satisfying (E1).

The required stabilization properties (2.4) are first established for a unit-intensity homo-
geneous Poisson process via Lemma 6.1 in [38]. Let ρ denote the minimal locally-determined
radius of stabilization for lNN,k. Let Pλ denote a homogeneous Poisson process with intensity

λ. By the scaling properties of lNN,k, we have ρ0 (Pλ) = ρ0

(
P1/

d
√
λ
)

= ρ0 (P1) / d
√
λ. Thus,

P∗ [ρ0 (Pλ) > L] = P∗
[
ρ0 (P1) > d

√
λL
]
. For any λ > 1, P∗ [ρ0 (Pλ) > L] ≤ P∗ [ρ0 (P1) > L].

Likewise, for any λ∗ < 1, we may choose Lδ such that P∗
[
ρ0 (P1) > d

√
λ∗Lδ

]
≤ δ. Then

P [ρ0 (Pλ) > Lδ] ≤ δ for all λ ∈ [λ∗,∞). Stabilization then extends to the binomial sam-
pling setting via Lemma 2.5 and the translation invariance of lNN,k. We have for any δ > 0
that there exists an nδ < ∞ and L∗δ < ∞ such that P∗

[
ρ d
√
nY ′ (

d
√
nYn) > L∗δ

]
≤ δ. Both

quantities do not depend specifically on G.
When restricted to C, we have an absolute upper bound of diam (C) d

√
n for the radius

of stabilization, as all points will fall inside of C almost surely. We set Lδ =
max{diam (C) d

√
nδ, L

∗
δ}. Then P∗

[
ρ d
√
nY ′ (

d
√
nYn) > Lδ

]
≤ δ for all n ∈ N, satisfying (S2).

We now have the required pieces to prove bootstrap convergence. Although Cp,M ∩
Dγ,r0 (C) is only a subset of Cp,M , the proof and conclusion of Proposition 2.6 still ap-
ply. Likewise, the proof of Theorem 2.7 is easily altered to include the additional condition

1

{
F̂n ∈ Dγ,r0 (C)

}
→ 1. We omit details here.

Appendix C: Lp Consistency of Kernel Density Estimators

In this section we discuss the Lp-norm consistency of the kernel density estimator under
very mild conditions. To the best of our knowledge, the exact proof of this result could not
be found in the kernel density literature, though it employs well-known results from proba-
bility theory. In the context of our smoothed bootstrap procedure, the Lp-norm convergence
assumption of the KDE follows as a direct consequence of the following theorem. Notably,



Roycraft et al./Bootstrapping Stabilizing Statistics 56

the necessary assumptions for Lp-norm convergence for the KDE are strictly weaker than
those of Theorem 2.7.

ForQ a kernel with
∫
Rd Q (x) dx = 1, defineQh (x) := Q (x/h) /hd. Let F be a probability

distribution on Rd with corresponding density f and {Xi}i∈N
iid∼ F . The kernel density

estimator for f with bandwidth h is

f̂n,h (x) :=
1

n

n∑
i=1

Qh (x−Xi) (C.1)

Proposition C.1. Given p ≥ 2, let ||Q||p <∞ and ||f ||p <∞. Then for any hn such that

limn→∞ hn =∞ and limn→∞ np/(2d(p−1))hn =∞∣∣∣∣∣∣f̂n,hn − f ∣∣∣∣∣∣
p

p→ 0 (C.2)

If further
∑
n∈N 1/

(
np/2h

d(p−1)
n

)
<∞∣∣∣∣∣∣f̂n,hn − f ∣∣∣∣∣∣

p

a.s.→ 0 (C.3)

Proof. The expectation of f̂n,hn is Qhn ∗ f , where ∗ denotes the convolution operator. We
expand the Lp-norm using the triangle inequality.∣∣∣∣∣∣f̂n,hn − f ∣∣∣∣∣∣

p
≤
∣∣∣∣∣∣f̂n,hn −Qhn ∗ f ∣∣∣∣∣∣

p
+ ||Qhn ∗ f − f ||p (C.4)

Because
∫
Rd Qhn (x) dx = 1 and ||f ||p <∞, the second term goes to 0 with hn → 0 via

Theorem 8.14 in [25]. We focus on the first term of (C.4).

E
[∫ ∣∣∣f̂n,hn (x)− (Qhn ∗ f) (x)

∣∣∣p dx

]
=

∫
E
[∣∣∣f̂n,hn (x)− (Qhn ∗ f) (x)

∣∣∣p] dx (C.5)

=
1

np

∫
E

[∣∣∣∣∣
n∑
i=1

Yi (x)

∣∣∣∣∣
p]

dx (C.6)

where Yi (x) := Qhn (x−Xi)− (Qhn ∗ f) (x) are iid mean-zero random variables.
We symmetrize using independent Radamacher random variables {ei}i∈N, letting Zi (x) :=

eiYi (x). We have that E
[
|
∑n
i=1 Yi (x)|p

]
≤ 2pE

[
|
∑n
i=1 Zi (x)|p

]
. By Corollary 3 in [35],

there exists a universal constant C <∞ such that, for any j ∈ N

E

[∣∣∣∣∣
n∑
i=1

Zi (x)

∣∣∣∣∣
p]
≤ Cp

(
p

log p

)p
max

{(
nE
[
|Zj (x)|2

]) p
2

, nE [|Zj (x)|p]
}

(C.7)

= Cp
(

p

log p

)p
max

{(
nE
[
|Yj (x)|2

]) p
2

, nE [|Yj (x)|p]
}

≤ Cp
(

p

log p

)p
max

{
n
p
2E [|Yj (x)|p] , nE [|Yj (x)|p]

}
= Cp

(
p

log p

)p
n
p
2E [|Yj (x)|p] . (C.8)
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Then

E
[∫ ∣∣∣f̂n,hn (x)− (Qhn ∗ f) (x)

∣∣∣p dx

]
≤ 2pCp

n
p
2

(
p

log p

)p ∫
E [|Yj (x)|p] dx. (C.9)

∫
E [|Yj (x)|p] dx = E

[∫
|Yj (x)|p dx

]
(C.10)

=

∫ ∫
|Qhn (x− y)− (Qhn ∗ f) (x)|p f (y) dx dy

≤ 2p−1

∫ ∫
(|Qhn (x− y)|p + |(Qhn ∗ f) (x)|p) f (y) dx dy

= 2p−1
(
||Qhn ||

p
p + ||Qhn ∗ f ||

p
p

)
≤2p||Qhn ||

p
p

=
2p

(hdn)
p−1 ||Q||

p
p. (C.11)

The last inequality follows from Young’s inequality for convolutions, given that ||f ||1 = 1,
f being a probability density.

E
[∫ ∣∣∣f̂n,hn (x)− (Qhn ∗ f) (x)

∣∣∣p dx

]
≤ 4pCp

(
p

log p

)p ||Q||pp(
n

p
2d(p−1)hn

)d(p−1)
(C.12)

As limn→∞ np/(2d(p−1))hn = ∞ by assumption, this final bound goes to 0 with n → ∞.
For any ε > 0, Markov’s inequality gives

P
[∣∣∣∣∣∣f̂n,hn −Qhn ∗ f ∣∣∣∣∣∣

p
≥ ε
]

= P
[∣∣∣∣∣∣f̂n,hn −Qhn ∗ f ∣∣∣∣∣∣p

p
≥ εp

]
(C.13)

≤
E
[∣∣∣∣∣∣f̂n,hn −Qhn ∗ f ∣∣∣∣∣∣p

p

]
εp

(C.14)

As was shown earlier, the right hand side goes to 0, thus
∣∣∣∣∣∣f̂n,hn −Qhn ∗ f ∣∣∣∣∣∣

p

p→ 0.

As ||Qhn ∗ f − f ||p → 0, an application of Slutsky’s theorem gives the final result. If∑
n∈N 1/

(
np/2h

d(p−1)
n

)
< ∞, the almost sure result follows from Borel-Cantelli. hn =

n−(p−1)/2 (log (n))
2

satisfies this criterion.

Appendix D: Details of Simulation Study

Provided here are the data generating functions, written in pseudocode, for the simulation
study of Section 5. Each generator below corresponds to a distribution F1-F7 in Table 1.
A description is included, explaining each case in more detail. In all of the following, Sd−1

denotes the unit sphere in Rd, Bz (r) the ball with radius r around z, and Unif (S) the
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uniform distribution on the set S. N
(
µ, σ2

)
denotes the normal distribution with mean µ and

variance σ2, and Exp (λ) is the exponential distribution with rate parameter λ. Cauchy (λ)
denotes the Cauchy distribution with scale parameter λ, and (·) is used to show vector
concatenation.

Generator 1:

1: θ ∼ Unif
(
S1
)

2: S ∼ Unif ({−1, 1})
3: R ∼ Unif ([0, 1])

return X = θR.9S

F1 is radially symmetric around the origin, and the radius is such that the random variable is unbounded,
and the L8 norm of the overall density is finite. Furthermore, the density approaches infinity near the
origin. This case is chosen so as to test the assumptions of Corollary 4.2 with regards to the required

norm bound.

Generator 2:

1: θ ∼ Unif
(
S1
)

2: S ∼ Unif ({−1, 1})
3: R ∼ Unif ([0, 1])

return X = θR.55S

F2 is radially symmetric around the origin, and the radius is such that the random variable is unbounded.
The L2 norm of the overall density is finite, but the L8 norm is infinite. As with distribution F1, the

density approaches infinity near the origin. This case violates the assumptions of Corollary 4.2.

Generator 3:

1: θ ∼ Unif
(
S1
)

2: X1, X2 ∼ N (0, .04)
return θ + (Y1, Y2).

F3 represents a ring in R2, combined with additive Gaussian noise. The variance parameter is chosen
small enough so that the ring structure is not lost within the additive noise.

Generator 4:

1: θ ∼ Unif (B0 (1))
2: X1, X2, X3 ∼ N (0, .01)

return θ + (Y1, Y2, Y3).

F4 is the uniform distribution on the unit ball in R3, with a small amount of additive noise included to
slightly smooth the boundary at radius 1.



Roycraft et al./Bootstrapping Stabilizing Statistics 59

Generator 5:

1: X ∼ Unif




(0.38741799, 0.24263535, 0.09535272)
(0.25147839, 0.63824409, 0.62425101)
(0.73988542, 0.80749034, 0.84972394)
(0.26811913, 0.35911205, 0.08316547)
(0.65954757, 0.04704809, 0.02113341)




2: Y1, Y2, Y3 ∼ Exp (25)
return X + (Y1, Y2, Y3).

F5 consists of 5 clusters, one around each of the provided opints in R3. Exponential noise is included to
test the effects of heavier tails on the final coverage probability. The rate parameter was chosen large

enough so that the 5 clusters remain distinct after noise addition.

Generator 6:

1: θ ∼ Unif
(
S2
)

2: Y1, ..., Y5 ∼ Cauchy (.1)
return (θ, 0, 0) + (Y1, ..., Y5)

F6 represents a 2-dimensional unit sphere embedded in a higher dimension R6. We have included additive
Cauchy noise to investigate the effects of very heavy tails.

Generator 7:

1: (θ1, θ2) ∼ Unif
(
S1
)

2: S ∼ Unif ({−1, 1})
3: Y1, ..., Y10 ∼ N (0, .04)

return (θ1 + S, θ2, 0, ..., 0) + (Y1, ..., Y10)

F7 represents a dual ring, or figure-8 embedded in R10. Full-dimensional Gaussian noise is added, with
variance chosen small enough so that the dual rings are not closed upon noise addition. F7 is included to

illustrate the effects of the “curse of dimensionality” expected in higher dimensions.
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