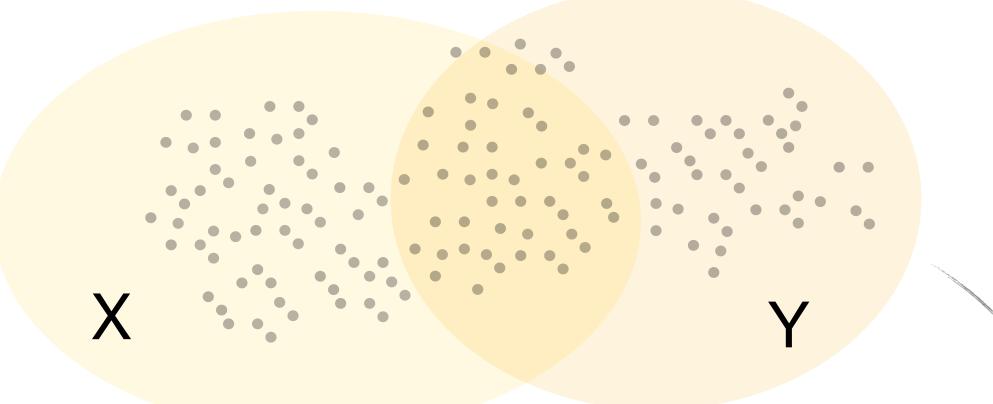
Homotopical decompositions of simplicial and Vietoris-Rips complexes Wojciech Chachólski, Alvin Jin, Martina Scolamiero, Francesca Tombari **KTH-WASP**

From local to global

Homology of the components

Homology of the simplicial complex



$\operatorname{VR}_r(X) \cup \operatorname{VR}_r(Y) \subset \operatorname{VR}_r(X \cup Y)$

In general this inclusion does not lead to homology isomorphism

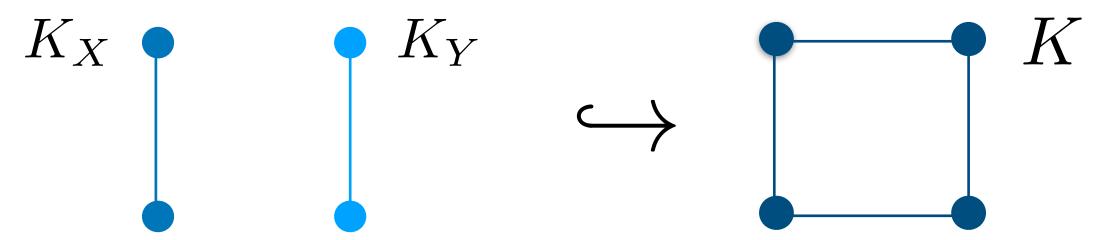
The problem

Let K be a simplicial complex and $K_0 = X \cup Y$ a covering of its vertices

Data-driven decomposition

Can we measure their difference?

 $K_X \cup K_Y \hookrightarrow K$

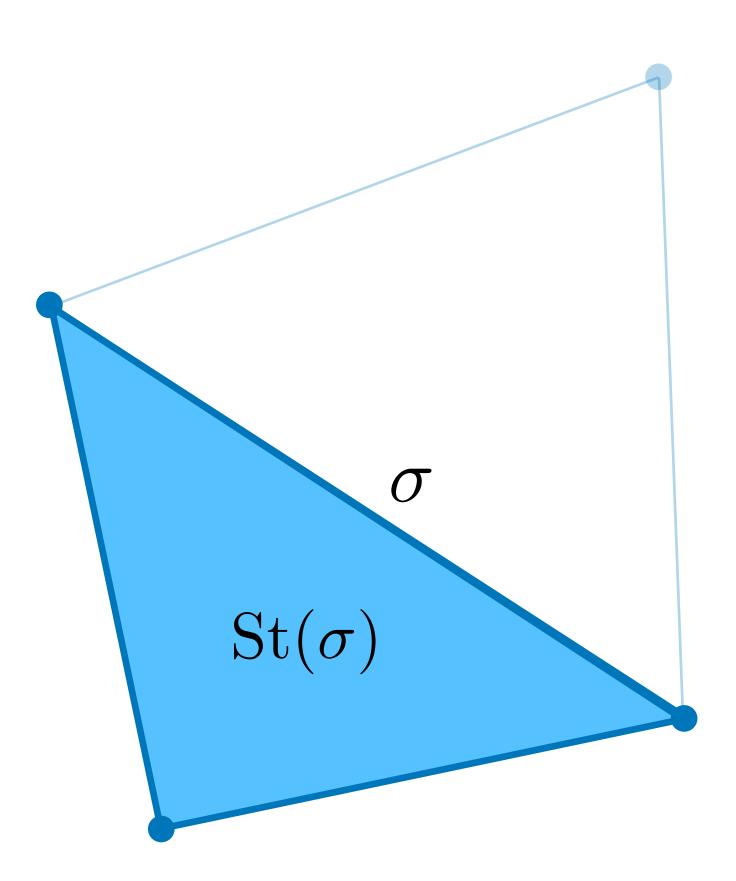


Star

The star of a simplex σ in K is the **subcomplex**

 $St(\sigma) := \{ \mu \in K \mid \sigma \cup \mu \in K \}$

It is contractible for every σ .

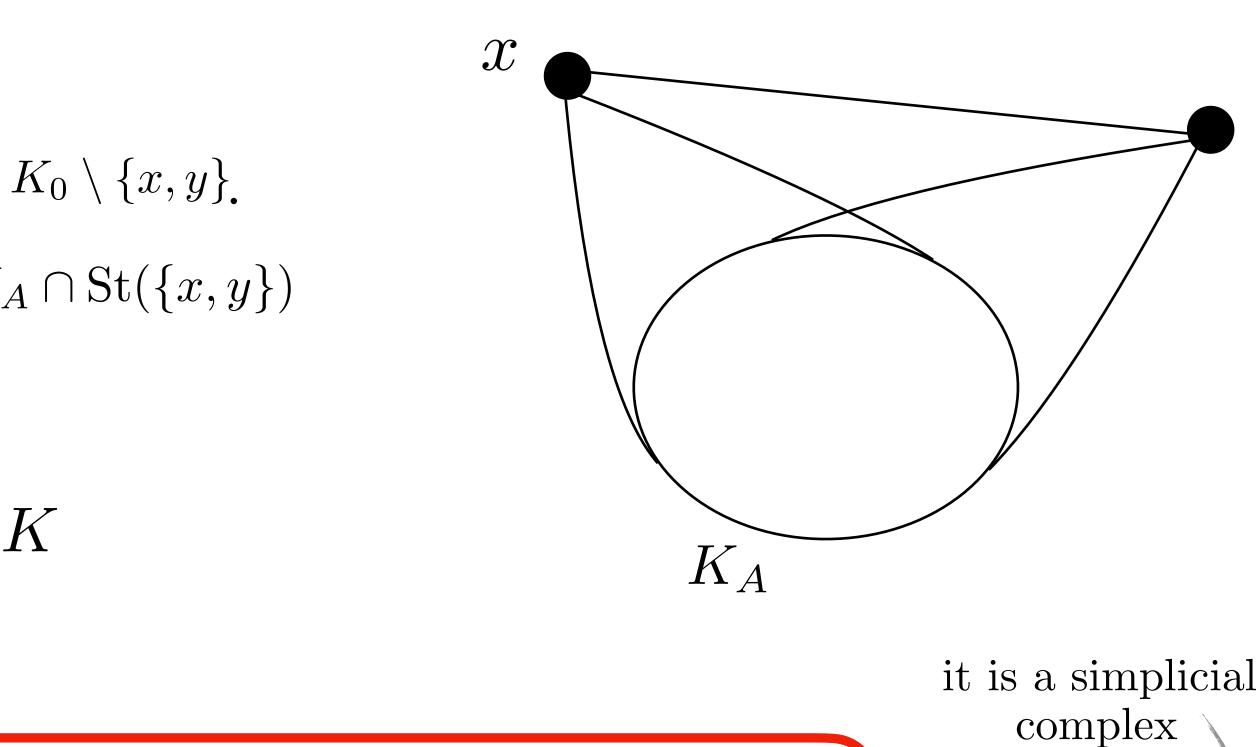


2 points outside

Let $X = K_0 \setminus \{y\}$, $Y = K_0 \setminus \{x\}$ and $A = X \cap Y = K_0 \setminus \{x, y\}$. If $\{x, y\}$ is a simplex in K we can define $St := K_A \cap St(\{x, y\})$ leading to a cofibration sequence

$$\Sigma \mathrm{St} \hookrightarrow K_X \cup K_Y \hookrightarrow \mathbb{I}$$

In general, if $K_0 = X \cup Y$, St $(\sigma, A) = \{\mu \subset A \mid |\mu| >$ it might be empty is the **obstruction comp**



,
$$A = X \cap Y$$
 and σ simplex in K ,
 0 and $\mu \cup \sigma \in K$ = $K_A \cap St(\sigma)$
plex of σ .

n+1 points outside

Let σ be a subset of n + 1 distinct vertices of K.

- If σ does not form a simplex in K, then
- If σ forms a simplex in K, then there is a cofibration sequence:

$$\Sigma^n \operatorname{St}(\sigma, K_0 \setminus \sigma) \to \bigcup_{v \in \sigma}$$

 $\operatorname{St}(\sigma, K_0 \setminus \sigma) \neq \emptyset$ and $\overline{H}_i(\operatorname{St}(\sigma, K_0 \setminus \sigma), \mathbb{Z}) = 0$ for all *i*

 $\bigcup_{v\in\sigma} K_{K_0\setminus\{v\}} \hookrightarrow K \text{ is a weak equivalence}$

$$\bigcup_{v\in\sigma} K_{K_0\setminus\{v\}} = K.$$

 $K_{K_0 \setminus \{v\}} \hookrightarrow K$

For example, if $\operatorname{St}(\sigma, K_0 \setminus \sigma)$ is contractible.

Decompositions I

Let P be the subposet of K given by

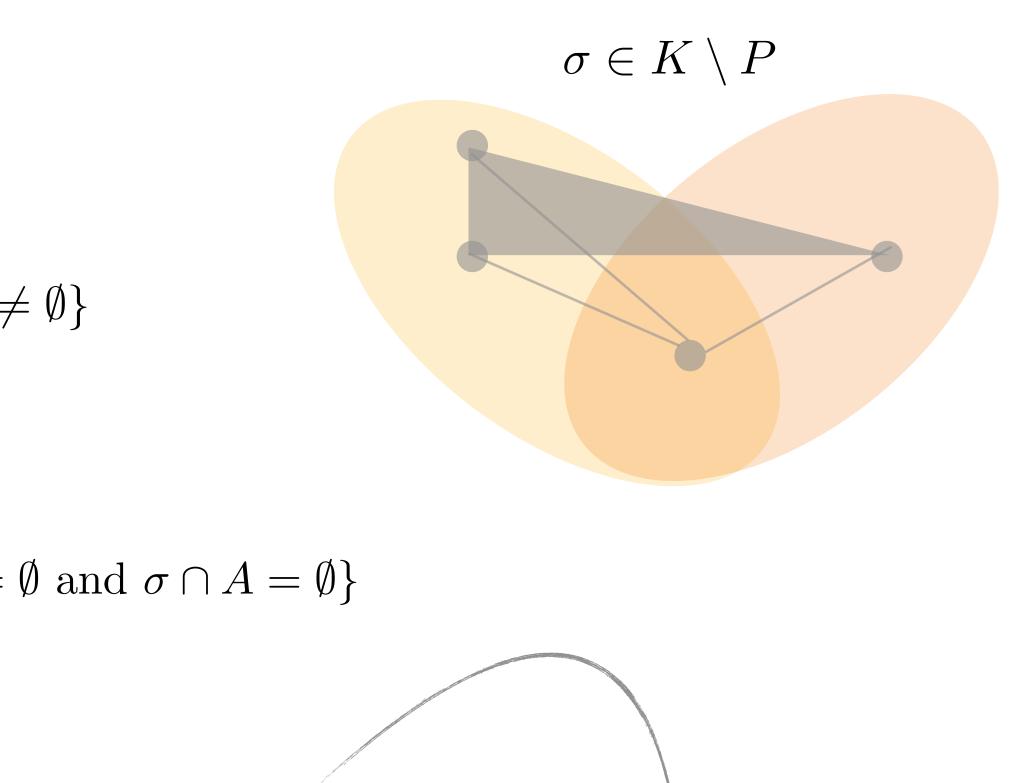
 $P := \{ \sigma \in K \mid \sigma \subset X \text{ or } \sigma \subset Y \text{ or } \sigma \cap A \neq \emptyset \}$

and hence the set of simplices that are not in P is

 $K \setminus P = \{ \sigma \in K \mid \sigma \cap X \neq \emptyset \text{ and } \sigma \cap Y \neq \emptyset \text{ and } \sigma \cap A = \emptyset \}$

 $K_X \cup K_Y \hookrightarrow P \hookrightarrow K$

Always a weak equivalence

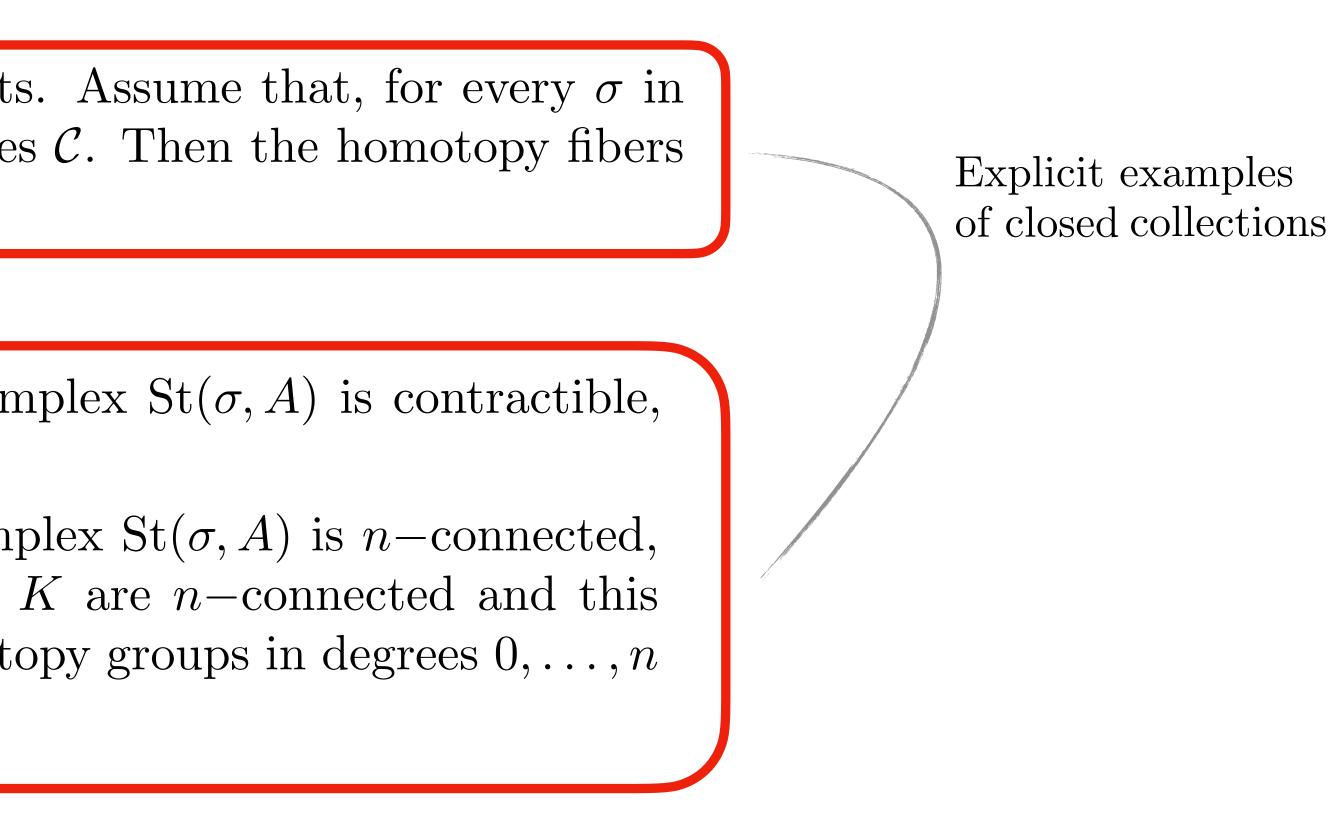


Its fibers are weakly equivalent to the obstruction complexes

Decompositions II

Let \mathcal{C} be a closed collection of simplicial sets. Assume that, for every σ in $K \setminus P$, the obstruction complex $\operatorname{St}(\sigma, A)$ satisfies \mathcal{C} . Then the homotopy fibers of the inclusion $K_X \cup K_Y \subset K$ also satisfy \mathcal{C} .

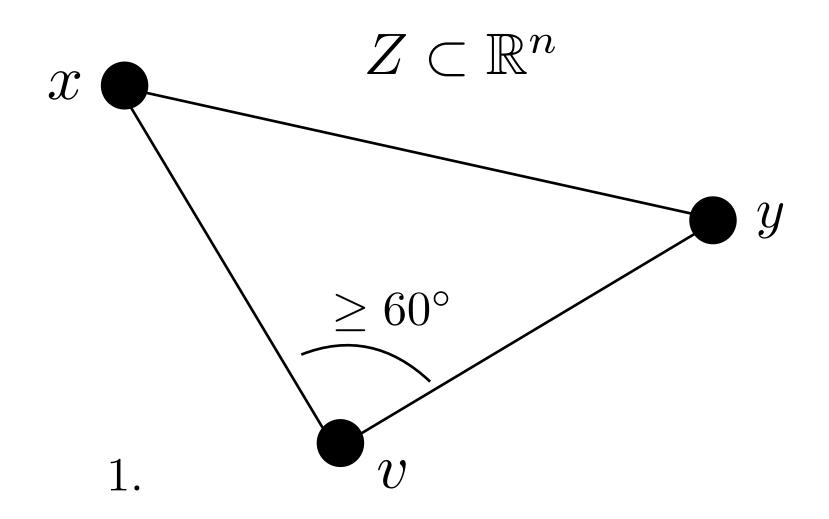
- If, for every σ in $K \setminus P$, the simplicial complex $St(\sigma, A)$ is contractible, then $K_X \cup K_Y \subset K$ is a weak equivalence.
- If, for every σ in $K \setminus P$, the simplicial complex $\operatorname{St}(\sigma, A)$ is *n*-connected, then the homotopy fibers of $K_X \cup K_Y \subset K$ are *n*-connected and this inclusion induces an isomorphism on homotopy groups in degrees $0, \ldots, n$ and a surjection in degree n + 1.

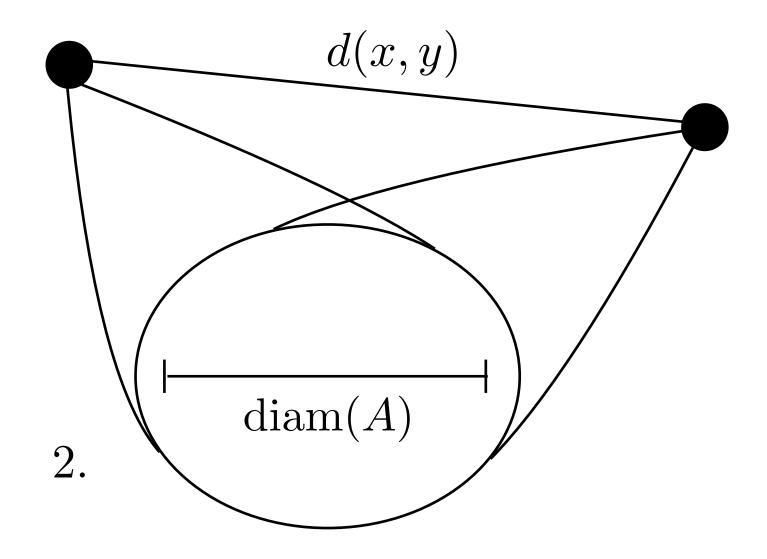


Vietoris-Rips for distances

Let (Z, d) be a distance space, $X \cup Y = Z$ be a covering of Z, and $A = X \cap Y$ be non-empty. Assume that for every x in $X \setminus A$, y in $Y \setminus A$ and v in A, 1. $d(x,y) \ge d(x,v)$ and $d(x,y) \ge d(y,v)$ 2. $d(x, y) \ge \operatorname{diam}(A)$

Then $\operatorname{VR}_r(X) \cup \operatorname{VR}_r(Y) \hookrightarrow \operatorname{VR}_r(Z)$ is a weak equivalence for all r in $[0, \infty)$.



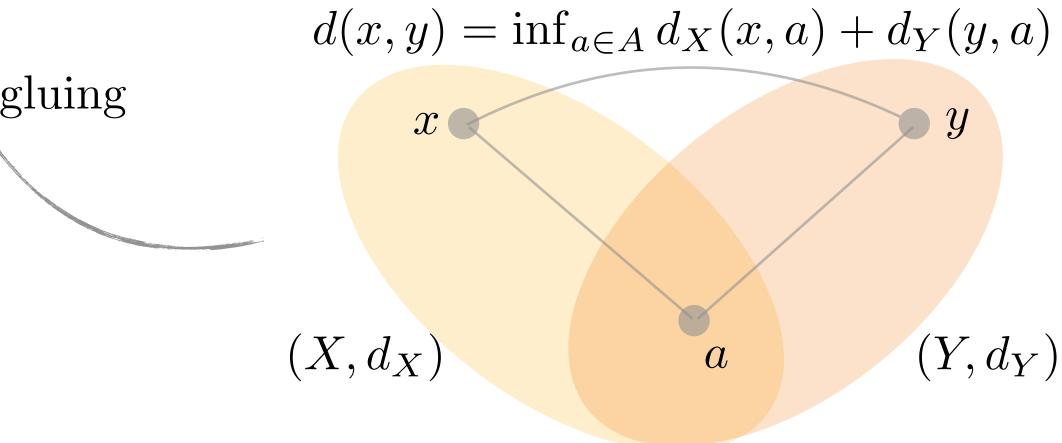


Vietoris-Rips for pseudometrics

(Z, d) metric gluing

Assume that for every vertex v in an edge σ in $\operatorname{VR}_r(Z) \setminus P$, if a and b are elements in A such that $d(a, v) \leq r$ and $d(v, b) \leq r$, then $2d(a, b) \leq d(a, v) + d(v, b)$.

Adamaszek, M., Adams, H., Gasparovic, E., Gommel, M., Purvine, E., Sazdanovic, R., Wang, B., Wang, Y., Ziegelmeier, L.: On homotopy types of vietoris-rips complexes of metric gluings. arXiv: 1712.06224 (2020). URL https://arxiv.org/abs/1712.06224



Vietoris-Rips for pseudometrics

For the first time triangular inequality plays a role

Assume that for every vertex v in an edge σ in $\operatorname{VR}_r(Z) \setminus P$, if a and b are elements in A such that $d(a, v) \leq r$ and $d(v, b) \leq r$, then $2d(a, b) \leq d(a, v) + d(v, b)$. Then the homotopy fibers of the inclusion $\operatorname{VR}_r(X) \cup \operatorname{VR}_r(Y) \subset \operatorname{VR}_r(Z)$ are simply connected and this map induces an isomorphism on π_0 and π_1 and a surjection on π_2 .

