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Abstract

Persistent homology has become an important tool for extracting geometric and topological
features from data, whose multi-scale features are summarized in a persistence diagram. From a
statistical perspective, however, persistence diagrams are very sensitive to perturbations in the
input space. In this work, we develop a framework for constructing robust persistence diagrams
from superlevel filtrations of robust density estimators constructed using reproducing kernels.
Using an analogue of the influence function on the space of persistence diagrams, we establish
the proposed framework to be less sensitive to outliers. The robust persistence diagrams are
shown to be consistent estimators in bottleneck distance, with the convergence rate controlled
by the smoothness of the kernel—this in turn allows us to construct uniform confidence bands
in the space of persistence diagrams. Finally, we demonstrate the superiority of the proposed
approach on benchmark datasets.

1 Introduction

Given a set of points Xn = {X1,X2, . . . ,Xn} observed from a probability distribution P on an
input space X ⊆ Rd, understanding the shape of Xn sheds important insights on low-dimensional
geometric and topological features which underlie P, and this question has received increasing
attention in the past few decades. To this end, Topological Data Analysis (TDA), with a special
emphasis on persistent homology (Edelsbrunner et al., 2000; Zomorodian and Carlsson, 2005), has
become a mainstay for extracting the shape information from data. In statistics and machine-
learning, persistent homology has facilitated the development of novel methodology (e.g., Chazal
et al. 2013; Chen et al. 2019; Brüel-Gabrielsson et al. 2018), which has been widely used in a variety
of applications dealing with massive, unconventional forms of data (e.g., Gameiro et al. 2015; Bendich
et al. 2016; Xu et al. 2019).

Informally speaking, persistent homology detects the presence of topological features across a
range of resolutions by examining a nested sequence of spaces, typically referred to as a filtration.
The filtration encodes the birth and death of topological features as the resolution varies, and is
presented in the form of a concise representation—a persistence diagram or barcode. In the context
of data-analysis, there are two different methods for obtaining filtrations. The first is computed
from the pairwise Euclidean distances of Xn, such as the Vietoris-Rips, Čech, and Alpha filtrations
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Figure 1: (Left) Xn is sampled from a circle with small perturbations to each point. The persistence diagram
detects the presence of the loop, as guaranteed by the stability of persistence diagrams Chazal et al. (2016);
Cohen-Steiner et al. (2007). (Right) Xn is sampled from a circle but with just a few outliers. The resulting
persistence diagram changes dramatically — the persistence of the main loop plummets, and other spurious
loops appear, as elaborated in Section 2.

Edelsbrunner et al. (2000). The second approach is based on choosing a function on X that reflects
the density of P (or its approximation based on Xn), and, then, constructing a filtration. While
the two approaches explore the topological features governing P in different ways, in essence, they
generate equivalent insights.

Despite obvious advantages, the adoption of persistent homology in mainstream statistical method-
ology is still limited. An important limitation among others, in the statistical context, is that the
resulting persistent homology is highly sensitive to outliers. While the stability results of Chazal
et al. (2016); Cohen-Steiner et al. (2007) guarantee that small perturbations on all of Xn induce
only small changes in the resulting persistence diagrams, a more pathological issue arises when a
small fraction of Xn is subject to very large perturbations. Figure 1 illustrates how inference from
persistence diagrams can change dramatically when Xn is contaminated with only a few outliers.
Another challenge is the mathematical difficulty in performing sensitivity analysis in a formal
statistical context. Since the space of persistence diagrams have an unusual mathematical structure,
it falls victim to issues such as non-uniqueness of Fréchet means and bounded curvature of geodesics
(Mileyko et al., 2011; Turner et al., 2014; Divol and Lacombe, 2019). With this background, the
central objective of this paper is to develop outlier robust persistence diagrams, develop a framework
for examining the sensitivity of the resulting persistence diagrams to noise, and establish statistical
convergence guarantees. To the best of our knowledge, not much work has been carried out in this
direction, except for Bendich et al. (2011) where robust persistence diagrams are constructed from
Vietoris-Rips or Čech filtrations on Xn by replacing the Euclidean distance with diffusion distance.
However, no sensitivity analysis of the resultant diagrams are carried out in (Bendich et al., 2011) to
demonstrate their robustness.

Contributions. The main contributions of this work are threefold. 1) We propose robust persis-
tence diagrams constructed from filtrations induced by an RKHS-based robust KDE (kernel density
estimator) Kim and Scott (2012) of the underlying density function of P (Section 3). While this idea
of inducing filtrations by an appropriate function—(Fasy et al., 2014; Chazal et al., 2017; Phillips
et al., 2015) use KDE, distance-to-measure (DTM) and kernel distance (KDist), respectively—has
already been explored, we show the corresponding persistence diagrams to be less robust compared
to our proposal. 2) In Section 4.1, we generalize the notions of influence function and gross error
sensitivity—which are usually defined for normed spaces—to the space of persistence diagrams, which
lack the vector space structure. Using these generalized notions, we investigate the sensitivity of per-
sistence diagrams constructed from filtrations induced by different functions (e.g., KDE, robust KDE,
DTM) and demonstrate the robustness of the proposed method, both theoretically (Remark 4.1)
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and numerically (Section 5). 3) We establish the statistical consistency of the proposed robust
persistence diagrams and provide uniform confidence bands by deriving exponential concentration
bounds for the uniform deviation of the robust KDE (Section 4.2).

Definitions and Notations. For a metric space (X, %), the ball of radius r centered at x ∈ X

is denoted by BX(x, r). Lp(X, µ) is the Banach space of functions of pth-power µ-integrable
functions with norm ‖ · ‖p, where µ is a Borel measure defined on X. P(Rd) is the set of all
Borel probability measures on Rd, and M(Rd) denotes the set of probability measures on Rd
with compact support and tame, bounded density function. For bandwidth σ > 0, Hσ denotes
a reproducing kernel Hilbert space (RKHS) with Kσ : Rd × Rd → R as its reproducing kernel.
We assume that Kσ is radial, i.e., Kσ(x,y) = σ−dψ(‖x− y‖2/σ) with ψ(‖ · ‖2) being a prob-
ability density function on Rd, where ‖x‖22 =

∑d
i=1 x

2
i for x = (x1, . . . , xd) ∈ Rd. We denote

‖Kσ‖∞ =· supx,y∈Rd Kσ(x,y) = σ−dψ(0). For P ∈ P(Rd), µP =·
∫
Kσ(·,y)dP(y) ∈ Hσ is called the

mean embedding of P, and Dσ =·
{
µP : P ∈ P(Rd)

}
is the space of all mean embeddings. δx denotes

a Dirac measure at x.

2 Persistent Homology: Preliminaries

We present the necessary background on persistent homology for completeness. See Chazal and
Michel (2017); Wasserman (2018) for a comprehensive introduction.

Persistent Homology. Let φ : X→ R be a non-negative function on the metric space (X, d). At
level r > 0, the sublevel set Xr = φ−1 ([0, r]) = {x ∈ X : φ(x) ≤ r} encodes the topological informa-
tion in X. For 0 ≤ r < s ≤ ∞, the sublevel sets are nested, i.e., Xr ⊆ Xs. The sequence {Xr}0≤r≤∞
is a nested sequence of topological spaces, called a filtration, denoted by Sub(φ), and φ is called
the filter function. As the level r varies, the evolution of the topology is captured in the filtration.
Roughly speaking, new cycles (i.e., connected components, loops, voids and higher order analogues)
can appear or existing cycles can merge. A new k-dimensional feature is said to be born at b ∈ R
when a nontrivial k-cycle appears in Xb. The same
k-cycle dies at level d > b when it disappears in all
Xd+ε for ε > 0. Persistent homology, PH∗(φ), is
an algebraic module which tracks the persistence
pairs (b, d) of births b and deaths d across the en-
tire filtration Sub(φ). Mutatis mutandis, a similar
notion holds for superlevel sets Xr = φ−1 ([r,∞)),
inducing the filtration Sup(φ). For r < s, the in-
clusion Xr ⊇ Xs is reversed and a cycle born at b
dies at a level d < b, resulting in the persistence
pair (d, b) instead. Figure 2 shows three connected
components in the superlevel set for r = 8. The
components were born as r swept through the blue
points, and die when r approaches the red points.
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Figure 2: Dgm (Sup(φ)) for φ : R→ R
We refer the reader to Appendix B for more details. Figure 2 is described in more detail in
Figure 9.

Persistence Diagrams. By collecting all persistence pairs, the persistent homology is concisely
represented as a persistence diagram Dgm (Sub(φ)) =·

{
(b, d) ∈ R2 : 0 ≤ b < d ≤ ∞

}
. A similar

definition carries over to Dgm (Sup(φ)), using (d, b) instead. See Figure 2 for an illustration. When
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the context is clear, we drop the reference to the filtration and simply write Dgm(φ). The kth

persistence diagram is the subset of Dgm(φ) corresponding to the k-dimensional features. The
space of persistence diagrams is the locally-finite multiset of points on Ω = {(x, y) : 0 ≤ x < y ≤ ∞},
endowed with the family of p-Wasserstein metrics Wp, for 1 ≤ p ≤ ∞. We refer the reader to
Edelsbrunner and Harer (2010); Divol and Lacombe (2019) for a thorough introduction. W∞ is
commonly referred to as the bottleneck distance.

Definition 2.1. Given two persistence diagrams D1 and D2, the bottleneck distance is given by

W∞ (D1, D2) = inf
γ∈Γ

sup
p∈D1∪∆

‖p− γ(p)‖∞ ,

where Γ = {γ : D1 ∪∆→ D2 ∪∆} is the set of all bijections from D1 to D2, including the diagonal
∆ =

{
(x, y) ∈ R2 : 0 ≤ x = y ≤ ∞

}
with infinite multiplicity.

An assumption we make at the outset is that the filter function f is tame. Tameness is a metric
regularity condition which ensures that the number of points on the persistence diagrams are finite,
and, in addition, the number of nontrivial cycles which share identical persistence pairings are also
finite. Tame functions satisfy the celebrated stability property w.r.t. the bottleneck distance.

Proposition 2.1 (Stability of Persistence Diagrams Cohen-Steiner et al., 2007; Chazal et al., 2016).
Given two tame functions f, g : X→ R,

W∞ (Dgm(f),Dgm(g)) ≤ ‖f − g‖∞ .

The space of persistence diagrams is, in general, challenging to work with. However, the stability
property provides a handle on the persistence space through the function space of filter functions.

3 Robust Persistence Diagrams

Given Xn = {X1,X2, . . . ,Xn} ⊆ Rd drawn iid from a probability distribution P ∈ M(Rd) with
density f , the corresponding persistence diagram can be obtained by considering a filter function
φn : Rd → R, constructed from Xn as an approximation to its population analogue, φP : Rd → R, that
carries the topological information of P. Commonly used φP include the (i) kernelized density, fσ,
(ii) Kernel Distance (KDist), dKσP , and (iii) distance-to-measure (DTM), dP,m, which are defined
as:

fσ(x) =·
∫
X

Kσ(x,y)dP(y) ; dKσP =· ‖µδx − µP‖Hσ ; dP,m(x) =·
√

1

m

m
∫
0
F−1
x (u)du,

where Fx(t) = P (‖X− x‖2 ≤ t) and σ,m > 0. For these φP, the corresponding empirical analogues,
φn, are constructed by replacing P with the empirical measure, Pn =· 1

n

∑n
i=1 δXi . For example, the em-

pirical analogue of fσ is the familiar kernel density estimator (KDE), fnσ = 1
n

∑n
i=1Kσ(·,Xi). While

KDE and KDist capture the topological information of supp(P) by approximating the density f (the
sublevel sets of KDist are simply rescaled versions of the superlevel sets of KDE (Phillips et al., 2015;
Chazal et al., 2017)), DTM, on the other hand, approximates the distance function to supp(P).

Since φn is based on Pn, it is sensitive to outliers in Xn, which, in turn affect the persistence diagrams
(as illustrated in Figure 1). To this end, in this paper, we propose robust persistence diagrams
constructed using superlevel filtrations of a robust density estimator of f , i.e., the filter function, φn
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is chosen to be a robust density estimator of f . Specifically, we use the robust KDE, fnρ,σ, introduced
by Kim and Scott (2012) as the filter function, which is defined as a solution to the following
M-estimation problem:

fnρ,σ =· arg inf
g∈G

∫
X

ρ
(
‖Φσ(y)− g‖Hσ

)
dPn(y), (1)

where ρ : R≥0 → R≥0 is a robust loss function, Φσ(x) = Kσ(·,x) ∈ Hσ is the feature map associated
with Kσ for a fixed σ > 0, and G = Hσ ∩ Dσ = Dσ is the hypothesis class. Observe that when
ρ(z) = 1

2z
2, the unique solution to Eq. (1) is given by the KDE, fnσ . Therefore, a robust KDE is

obtained by replacing the square loss with a robust loss, which satisfies the following assumptions.
These assumptions, which are similar to those of Kim and Scott (2012); Vandermeulen and Scott (2013)
guarantee the existence and uniqueness of fnρ,σ (if ρ is convex; Kim and Scott 2012), and are satisfied
by most robust loss functions, including the Huber loss, ρ(z) = 1

2z
2
1 {z ≤ 1}+

(
z − 1

2

)
1 {z > 1}

and the Charbonnier loss, ρ(z) =
√

1 + z2 − 1.

(A1) ρ is strictly-increasing and M -Lipschitz, with ρ(0) = 0.

(A2) ρ′(x) is continuous and bounded with ρ′(0) = 0 .

(A3) ϕ(x) = ρ′(x)/x is bounded, L-Lipschitz and continuous, with ϕ(0) <∞.

(A4) ρ′′ exists, with ρ′′ and ϕ nonincreasing.

Unlike for squared loss, the solution fnρ,σ cannot be obtained in a closed form. However, it can be
shown to be the fixed point of an iterative procedure, referred to as KIRWLS algorithm (Kim and
Scott, 2012). The KIRWLS algorithm starts with initial weights {w(0)

i }ni=1 such that
∑n

i=1w
(0)
i = 1,

and generates the iterative sequence of estimators {f (k)
ρ,σ}k∈N as

f (k)
ρ,σ =

n∑
i=1

w
(k−1)
i Kσ(·,Xi) ; w

(k)
i =

ϕ(‖Φσ(Xi)− f (k)
ρ,σ‖Hσ)∑n

j=1 ϕ(‖Φσ(Xj)− f (k)
ρ,σ‖Hσ)

.

Intuitively, note that if Xi is an outlier, then the corresponding weight wi is small (since ϕ is
nonincreasing) and therefore less weightage is given to the contribution of Xi in the density estimator.
Hence, the weights serve as a measure of inlyingness—smaller (resp. larger) the weights, lesser (resp.
more) inlying are the points. When Pn is replaced by P, the solution of Eq. (1) is its population
analogue, fρ,σ. Although fρ,σ does not admit a closed form solution, it can be shown (Kim and
Scott, 2012) that there exists a non-negative real-valued function wσ satisfying

∫
Rd wσ(x) dP(x) = 1

such that

fρ,σ =

∫
Rd
Kσ(·,x)wσ(x)dP(x) =

∫
Rd

ϕ(‖Φσ(x)− fρ,σ‖Hσ)∫
Rd ϕ(‖Φσ(y)− fρ,σ‖Hσ)dP(y)

Kσ(·,x) dP(x), (2)

where wσ acts as a population analogue of the weights in KIRWLS algorithm.

To summarize our proposal, the fixed point of the KIRWLS algorithm, which yields the robust
density estimator fnρ,σ, is used as the filter function to obtain a robust persistence diagram of Xn.
On the computational front, note that fnρ,σ is computationally more complex than the KDE, fnσ ,
requiring O(n`) computations compared to O(n) of the latter, with ` being the number of iterations
required to reach the fixed point of KIRWLS. However, once these filter functions are computed,
the corresponding persistence diagrams have similar computational complexity as both require
computing superlevel sets, which, in turn, require function evaluations that scale as O(n) for both
fnρ,σ and fnσ .
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4 Theoretical Analysis of Robust Persistence Diagrams

In this section, we investigate the theoretical properties of the proposed robust persistence diagrams.
First, in Section 4.1, we examine the sensitivity of persistence diagrams to outlying perturbations
through the notion of metric derivative and compare the effect of different filter functions. Next, in
Section 4.2, we establish consistency and convergence rates for the robust persistence diagram to
its population analogue. These results allow to construct uniform confidence bands for the robust
persistence diagram. The proofs of the results are provided in Section 6.

4.1 A measure of sensitivity of persistence diagrams to outliers

The influence function and gross error sensitivity are arguably the most popular tools in robust
statistics for diagnosing the sensitivity of an estimator to a single adversarial contamination Hampel
et al. (2011); Huber (2004). Given a statistical functional T : P(X) → (V, ‖·‖V ), which takes an
input probability measure P ∈ P(X) on the input space X and produces a statistic P 7→ T (P) in some
normed space (V, ‖·‖V ), the influence function of x ∈ X at P is given by the Gâteaux derivative of
T at P restricted to the space of signed Borel measures with zero expectation:

IF (T ;P,x) =· ∂

∂ε
T
(

(1− ε)P + εδx

)∣∣∣
ε=0

= lim
ε→0

T ((1− ε)P + εδx)− T (P)

ε
,

and the gross error sensitivity at P is given by Γ(T ;P) =· supx∈X ‖IF (T ;P,x)‖V . However, a
persistence diagram (which is a statistical functional) does not take values in a normed space, and,
therefore, the notion of influence function has to be generalized to metric spaces through the concept
of a metric derivative: Given a complete metric space (X, dX) and a curve s : [0, 1]→ X, the metric
derivative at ε = 0 is given by ∣∣s′∣∣ (0) =· lim

ε→0

1

ε
dX(s(0), s(ε)).

Using this generalization, we have the following definition, which allows to examine the influence an
outlier has on the persistence diagram obtained from a filtration.

Definition 4.1. Given a probability measure P ∈ P(Rd) and a filter function φP depending on P,
the persistence influence of a perturbation x ∈ Rd on Dgm (φP) is defined as

Ψ (φP;x) = lim
ε→0

1

ε
W∞

(
Dgm

(
φPεx
)
,Dgm (φP)

)
,

where Pεx =· (1− ε)P + εδx, and the gross-influence is defined as Γ(φP) = supx∈Rd Ψ (φP;x).

The following result (proved in Section 6.1) bounds the persistence influence for the persistence
diagram induced by the filter function fρ,σ, which is the population analogue of robust KDE.

Theorem 4.1. For a loss ρ satisfying (A1)–(A3), and σ > 0, the persistence influence of x ∈ Rd
on Dgm (fρ,σ) satisfies

Ψ (fρ,σ;x) ≤ ‖Kσ‖
1
2∞ ρ
′
(
‖Φσ(x)− fρ,σ‖Hσ

)(∫
Rd
ζ
(
‖Φσ(y)− fρ,σ‖Hσ

)
dP(y)

)−1

, (3)

where ζ(z) = ϕ(z)− zϕ′(z).
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Remark 4.1. We make the following observations from Theorem 4.1.

(i) Choosing ρ(z) = 1
2z

2 and noting that ϕ(z) = ρ′′(z) = 1, Eq. (3) yields a bound for the persistence
influence of the KDE as

Ψ (fσ;x) ≤ ‖Kσ‖
1
2∞ ‖Φσ(x)− fσ‖Hσ .

On the other hand, for robust loss functions, the term involving ρ′ is bounded because of (A2), making
them less sensitive to very large perturbations. In fact, for nonincreasing ϕ, it can be shown (see
Section 6.2) that

Ψ (fρ,σ;x) ≤ ‖Kσ‖
1
2∞wσ(x) ‖Φσ(x)− fρ,σ‖Hσ ,

where, in contrast to KDE, the measure of inlyingness, wσ, weighs down extreme outliers.

(ii) For the generalized Charbonnier loss (a robust loss function), given by ρ(z) =
(
1 + z2

)α/2 − 1
for 1 ≤ α ≤ 2, the persistence influence satisfies

Ψ (fρ,σ;x) ≤ ‖Kσ‖
1
2∞
(

1 + ‖Φσ(x)− fρ,σ‖2Hσ
)α−1

2

(
1 +

∫
Rd
‖Φσ(y)− fρ,σ‖2Hσ dP(y)

) 1−α
2

.

Note that for α = 1, the bound on the persistence influence Ψ (fρ,σ;x) does not depend on how
extreme the outlier x is. Similarly, for the Cauchy loss, given by ρ(z) = log(1 + z2), we have

Ψ (fρ,σ;x) ≤ ‖Kσ‖
1
2∞

(
1 +

∫
Rd
‖Φσ(y)− fρ,σ‖2Hσ dP(y)

)
.

This shows that for large perturbations, the gross error sensitivity for the Cauchy and Charbonnier
losses are far more stable than that of KDE. This behavior is also empirically illustrated in Figure 3.
The experiment is detailed in Section 5.2.

(iii) For the DTM function, it can be shown that

Ψ (dP,m;x) ≤ 2√
m

sup

{∣∣∣f(x)−
∫
Rd
f(y)dP(y)

∣∣∣ : ‖∇f‖L2(P) ≤ 1

}
. (4)

While dP,m cannot be compared to both fσ and fρ,σ, as it captures topological information at a different
scale, determined by m, we point out that when supp(P) is compact, Ψ (dP,m;x) is not guaranteed to
be bounded, unlike in Ψ (fρ,σ;x). We refer the reader to Section 6.2 for more details.

It follows from Remark 4.1 that as σ → 0, the persistence influence of both the KDE and robust KDE
behave as O(σ−d), showing that the robustness of robust persistence diagrams manifests only in cases
where σ > 0. However, robustness alone has no bearing if the robust persistence diagram and the
persistence diagram from the KDE are fundamentally different, i.e., they estimate different quantities
as σ → 0. The following result (proved in Section 6.3) shows that as σ → 0, Dgm (fρ,σ) recovers the
same information as that in Dgm (fσ), which is same as Dgm (f), where f is the density of P.

Theorem 4.2. For a strictly-convex loss ρ satisfying (A1)–(A4), and σ > 0, suppose P ∈ M(Rd)
with density f , and fρ,σ is the robust KDE. Then

W∞ (Dgm (fρ,σ) ,Dgm (f))→ 0 as σ → 0.
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Figure 3: Points Xn are sampled from P with nontrivial 1st-order homological features and outliers Ym
are added at a distance r from the support of P. (Left) The average L∞ distance between the density
estimators computed using Xn and Xn ∪ Ym as r increases. (Center) The average W∞ distance between the
corresponding persistence diagrams for the 1st-order homological features. (Right) The W1 distance (defined
in Eq. B.1 in Appendix B) between the same persistence diagrams. The results show that the outliers Ym
have little influence on the persistence diagrams from the robust KDEs. In contrast, as the outliers become
more extreme (i.e., r increases) their influence on the persistence diagrams from the KDE becomes more
prominent.

Suppose P = (1− π)P0 + πQ, where P0 corresponds to the true signal which we are interested in
studying, and Q manifests as some ambient noise with 0 < π < 1

2 . In light of Theorem 4.2, by letting
σ → 0, along with the topological features of P0, we are also capturing the topological features of Q,
which may obfuscate any statistical inference made using the persistence diagrams. In a manner,
choosing σ > 0 suppresses the noise in the resulting persistence diagrams, thereby making them
more stable. On a similar note, the authors in Fasy et al. (2014) state that for a suitable bandwidth
σ > 0, the level sets of fσ carry the same topological information as supp(P), despite the fact that
some subtle details in f may be omitted. In what follows, we consider the setting where robust
persistence diagrams are constructed for a fixed σ > 0.

4.2 Statistical properties of robust persistence diagrams from samples

Suppose Dgm
(
fnρ,σ

)
is the robust persistence diagram obtained from the robust KDE on a sample

Xn and Dgm (fρ,σ) is its population analogue obtained from fρ,σ. The following result (proved in
Section 6.4) establishes the consistency of Dgm

(
fnρ,σ

)
in the W∞ metric.

Theorem 4.3. For convex loss ρ satisfying (A1)–(A4), and fixed σ > 0, suppose Xn is observed iid
from a distribution P ∈M(Rd) with density f . Then

W∞
(
Dgm

(
fnρ,σ

)
,Dgm (fρ,σ)

) p→ 0 as n→∞.

We present the convergence rate of the above convergence in Theorem 4.4, which depends on the
smoothness of Hσ. In a similar spirit to Fasy et al. (2014), this result paves the way for constructing
uniform confidence bands. Before we present the result, we first introduce the notion of entropy
numbers associated with an RKHS.

8



Definition 4.2 (Entropy Number). Given a metric space (T, d) the nth entropy number is defined
as

en(T, d) =· inf

ε > 0 : ∃ {t1, t2, . . . , t2n−1} ⊂ T such that T ⊂
2n−1⋃
i=1

Bd(ti, ε)

 .

Further, if (V, ‖·‖V ) and (W, ‖·‖W ) are two normed spaces and L : V → W is a bounded, linear
operator, then en(L) = en(L : V →W ) =· en (L(BV ), ‖·‖W ), where BV is a unit ball in V .

Loosely speaking, entropy numbers are related to the eigenvalues of the integral operator associated
with the kernel Kσ, and measure the capacity of the RKHS in approximating functions in L2(Rd). In
our context, the entropy numbers will provide useful bounds on the covering numbers of sets in the
hypothesis class G. We refer the reader to Steinwart and Christmann (2008) for more details. With
this background, the following theorem (proved in Section 6.5) provides a method for constructing
uniform confidence bands for the persistence diagram constructed using the robust KDE on Xn.

Theorem 4.4. For convex loss ρ satisfying (A1)–(A4), and fixed σ > 0, suppose the kernel Kσ

satisfies en (id : Hσ → L∞(X)) ≤ aσn−
1
2p , where aσ > 1, 0 < p < 1 and X ⊂ Rd. Then, for a fixed

confidence level 0 < α < 1,

sup
P∈M(X)

P⊗n
{
W∞

(
Dgm

(
fnρ,σ

)
,Dgm (fρ,σ)

)
>

2M ‖Kσ‖
1
2∞

µ

(
ξ(n, p) + δ

√
2 log (1/α)

n

)}
≤ α,

where ξ(n, p) is given by

ξ(n, p) =


γ apσ

(1−2p) ·
1√
n

if 0 < p < 1
2 ,

γC
√
aσ · log(n)√

n
if p = 1

2 ,

γ
p
√
aσ

2p−1 ·
1

n1/4p if 1
2 < p < 1,

for fixed constants γ > 12√
log 2

, C > 3− log(9aσ) and µ = 2 min

{
ϕ(2 ‖Kσ‖

1
2∞), ρ′′(2 ‖Kσ‖

1
2∞)

}
.

Remark 4.2. We highlight some salient observations from Theorem 4.4.

(i) If diam(X) = r, and the kernel Kσ is m-times differentiable, then from (Steinwart and Christmann,
2008, Theorem 6.26), the entropy numbers associated with Kσ satisfy

en (id : Hσ → L∞(X)) ≤ crmn−
m
d .

In light of Theorem 4.4, for p = d
2m , we can make two important observations. First, as the dimension

of the input space X increases, we have that the rate of convergence decreases; which is a direct
consequence from the curse of dimensionality. Second, for a fixed dimension of the input space, the
parameter p in Theorem 4.4 can be understood to be inversely proportional to the smoothness of the
kernel. Specifically, as the smoothness of the kernel increases, the rate of convergence is faster, and
we obtain sharper confidence bands. This makes a case for employing smoother kernels.

(ii) A similar result is obtained in (Fasy et al., 2014, Lemma 8) for persistence diagrams from the
KDE, with a convergence rate Op(n−1/2), where the proof relies on a simple application of Hoeffding’s
inequality, unlike the sophisticated tools the proof of Theorem 4.4 warrants for the robust KDE.
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(b) π = 20%, p = 4× 10−60
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(c) π = 30%, p = 2× 10−72
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(d) π = 40%, p = 2.5×10−75

Figure 4: (a) A realization of Xn∪Ym. (b, c, d) As the noise level π increases, boxplots for W∞
(
Dρ,σ,D#

σ

)
in

blue andW∞
(
Dσ,D#

σ

)
in red show that the robust persistence diagram recovers the underlying signal better.

5 Experiments

We illustrate the performance of robust persistence diagrams in machine learning applications
through synthetic and real-world experiments. In all the experiments, the kernel bandwidth σ is
chosen as the median distance of each xi ∈ Xn to its kth–nearest neighbour using the Gaussian
kernel with the Hampel loss (similar setting as in Kim and Scott, 2012)—we denote this bandwidth
as σ(k). Since DTM is closely related to the k-NN density estimator (Biau et al., 2011), we choose
the DTM smoothing parameter as m(k) = k/n.

5.1 Bottleneck Simulation

The objective of this experiment is to assess how the robust KDE persistence diagram compares to
the KDE persistence diagram in recovering the topological features of the underlying signal. Xn is
observed uniformly from two circles and Ym is sampled uniformly from the enclosing square such
that m = 200 and m/n = π ∈ {20%, 30%, 40%}—shown in Figure 4 (a). For each noise level π, and
for each of N = 100 realizations of Xn and Ym, the robust persistence diagram Dρ,σ and the KDE
persistence diagram Dσ are constructed from the noisy samples Xn ∪ Ym. In addition, we compute
the KDE persistence diagram D#

σ on Xn alone as a proxy for the target persistence diagram one
would obtain in the absence of any contamination. The bandwidth σ(k) > 0 is chosen for k = 5. For
each realization i, bottleneck distances Ui = W∞

(
Dρ,σ,D#

σ

)
and Vi = W∞

(
Dσ,D#

σ

)
are computed

for 1st-order homological features. The boxplots and p-values for the one-sided hypothesis test
H0 : U − V = 0 vs. H1 : U − V < 0 are reported in Figures 4 (b, c, d). The results demonstrate
that the robust persistence diagram is noticeably better in recovering the true homological features,
and in fact demonstrates superior performance when the noise levels are higher.

5.2 Persistence-Influence Experiment

Points Xn are sampled from an annular region inside [−5, 5]2 along with some uniform noise in
the ambient space, corresponding to the black points in Figure 5 (a). Xn has interesting 1st-order
homological features. We compute the robust KDE fnρ,σ and the KDE fnσ on the points Xn along
with the corresponding persistence diagrams Dgm

(
fnρ,σ

)
and Dgm (fnσ ). Outliers Ym are added to

the original points at a distance r from the origin, the number of points roughly equal to r. Figure 5
(a) depicts these outliers in orange when r = 20.

10



−20 −10 0 10 20

−
20

−
10

0
10

20

x

y

(a)

20 40 60 80 100

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6

H0: Bottleneck Influence

Distance from Support

In
flu

en
ce

KDE
RKDE

(b)

20 40 60 80 100

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

H0: W1 Influence

Distance from Support

In
flu

en
ce

KDE
RKDE

(c)

20 40 60 80 100

0.
00

20
0.

00
30

0.
00

40
0.

00
50

Sup norm influence

Distance from Support

In
flu

en
ce

KDE
RKDE

(d)

20 40 60 80 100

0.
00

00
0.

00
10

0.
00

20
H1: Bottleneck Influence

Distance from Support

In
flu

en
ce

KDE
RKDE

(e)

20 40 60 80 100

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

H1: W1 Influence

Distance from Support
In

flu
en

ce

KDE
RKDE

(f)

Figure 5: (a) An example of Xn in blue and the contamination Ym when r = 10. (d) The L∞ influence of
Ym on the KDE and robust KDE. (b, e) The bottleneck influence of Ym. (c, f) The 1-Wasserstein influence
of Ym as the distance r increases.

The robust KDE fn+m
ρ,σ and fn+m

σ are now computed on the composite sample Xn ∪ Ym along with
the persistence diagrams Dgm

(
fn+m
ρ,σ

)
and Dgm (fn+m

σ ). The bandwidth σ(k) is chosen for k = 5.
We then compute the L∞ influence of Ym i.e., ‖fn+m − fn‖∞ as shown in Figure 5 (d). Additionally
for each of the 0th-order and 1st-order persistence diagrams, we compute the persistence influence of
Ym, i.e., W∞ (Dgm (fn+m) ,Dgm (fn)) as shown in Figures 5 (b, e), and the 1-Wasserstein influence,
i.e., W1 (Dgm (fn+m) ,Dgm (fn)) as shown in Figures 5 (c, f). We refer the reader to Eq. (B.1) in
Appendix B for the definition of W1 metric.

For each value of r, we generate 100 such samples and report the average in Figure 5. Figure 5
(d, e, f) correspond to the experiment illustrated in Figure 3. The results indicate that the robust
persistence diagrams, Dgm

(
fnρ,σ

)
, are relatively unperturbed when the outliers are added. It exhibits

stability even as r become very large. The KDE persistence diagrams, Dgm (fnσ ), on the other hand,
are unstable as the outlying noise becomes more extreme.

As discussed in the Remark 4.1 (iii), the persistence influence for DTM has a much weaker bound
as the outliers become more extreme, and in general is not guaranteed to be bounded. In Figure
6 we illustrate the results from the same experiment when the persistence diagrams from DTM is
contrasted with the persistence diagrams from the KDE. This analysis is for the same data as that
used in Figure 3. We remark that even though DTM is highly sensitive to extreme outliers, DTM

11



20 40 60 80 100

0
5

10
15

20
25

30

H0: Bottleneck Influence

Distance from Support

In
flu

en
ce

KDE
DTM

(a)

20 40 60 80 100

0
20

40
60

80

Sup norm influence

Distance from Support

In
flu

en
ce

KDE
DTM

(b)

20 40 60 80 100

0
20

40
60

80
10

0 H0: W1 Influence

Distance from Support

In
flu

en
ce

KDE
DTM

(c)

20 40 60 80 100

0
5

10

H1: Bottleneck Influence

Distance from Support

In
flu

en
ce

KDE
DTM

(d)

20 40 60 80 100

0
5

10
15

H1: W1 Influence

Distance from Support

In
flu

en
ce

KDE
DTM

(e)

Figure 6: For the same data in Figure 5, (a, d) depicts the bottleneck influence for the DTM in contrast to the
KDE – the red line is the same as the one from Figure 5 (b, e). Similarly, in (c, e) we see the W1 persistence
influence of Ym for the DTM in contrast to the KDE. (b) shows the L∞ influence of Ym on the DTM. The
robust KDE lines are omitted from all plots as it appears to almost merge with the KDE at this scale.

based filtrations have other remarkable properties, as described in Chazal et al. (2017). They are
very useful for analyzing persistent homology when one has access to just a single collection of points
Xn. For DTM the smoothing parameter is chosen as m(k) = k/n with k = 5.

5.3 Random Circles

The objective of this simulation is to evaluate the performance of persistence diagrams in a supervised
learning task. We select circles S1, S2, . . . ,SN randomly in R2 with centers inside [0, 2]2, with the
number of such circles, N uniformly sampled from {1, 2, . . . , 5}. Conditional on N = N , Xn is
sampled uniformly from S1, . . . ,SN with 50% noise in the enclosing square. Two such point clouds
are shown in Figure 7 (a, b). Persistence diagrams Dgm (fnσ ) and Dgm

(
fnρ,σ

)
are constructed for

bandwidth σ(k) selected from k = 5, 7, and vectorized in the form of persistence images Img (fnσ , h),
and Img

(
fnρ,σ, h

)
for varying bandwidths h (Adams et al., 2017). With N as the response and the

persistence images as the input, results from a support vector regression, averaged over 50 random
splits, is shown in Figure 7 (c, d). For a fixed h the robust persistence diagram seems to always
contain more predictive information, as observed in the envelope it forms in Figure 7 (c, d).
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(d) k = 7

Figure 7: (a, b) A realization Xn when N = 2 and N = 5. (c, d) The predicted mean-squared error vs. the
persistence image bandwidth for persistence diagrams in support vector regression.

5.4 MPEG7

In this experiment, we examine the performance of persistence diagrams in a classification task using
the MPEG7 dataset Latecki et al. (2000). For simplicity, we only consider five classes: beetle, bone,
spring, deer and horse. We first extract the boundary of the images using a Laplace convolution,
and sample Xn uniformly from the boundary of each image, adding uniform noise (π = 15%) in the
enclosing region. Persistence diagrams Dgm (fnσ ) and Dgm

(
fnρ,σ

)
from the KDE and robust KDE

are constructed. In addition, owing to their ability to capture nuanced multi-scale features, we
also construct Dgm (dn,m) from the DTM filtration. The smoothing parameters σ(k) and m(k) are
chosen as earlier for k = 5. The persistence diagrams are normalized to have a max persistence
max{|d− b| = 1 : (b, d) ∈ Dgm(φ)}, and then vectorized as persistence images for various bandwidths
h. A linear SVM classifier is then trained on the resulting persistence images. In the first experiment
we only consider the first three classes, and in the second experiment we consider all five classes. The
results for the classification error, shown in Figure 8, demonstrate the advantage of the proposed
method.
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Figure 8: (a) Xn is sampled from the image boundary of a bone, and uniform noise is added. (b) The resulting
persistence diagram from the robust KDE. The persistence diagram picks up the 1st–order features near the
joints of the cartoon bone. The misclassification error for the KDE, robust KDE and DTM as the persistence
image bandwidth increases, (c) for the three-class classification and, (d) for the five-class classification.
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6 Proofs

In what follows, for a fixed loss ρ, we will use the notation `g(·) = `(·, g) = ρ
(
‖Φ(·)− g‖Hσ

)
in order

to emphasize the dependency of the loss on the choice of g ∈ G. Borrowing some notation from
empirical process theory, we define the empirical risk-functional in Eq. (1) as

Jn(g) =· Pn`g =
n∑
i=1

ρ
(
‖Φσ(Xi)− g‖Hσ

)
,

and, similarly, the population risk functional J (g) is given by

J (g) =· P`g =

∫
Rd
ρ
(
‖Φσ(x)− g‖Hσ

)
dP(x).

6.1 Proof of Theorem 4.1

For ε > 0, define the risk functional associated with Pεx to be

Jε,x(g) = Pεx`g = (1− ε)J (g) + ερ
(
‖Φσ(x)− g‖Hσ

)
,

and let f ε,xρ,σ = infg∈G Jε,x(g) be its minimizer. From the stability result of Proposition 2.1 we have
that

Ψ (fρ,σ;x) = lim
ε→0

1

ε
W∞

(
Dgm

(
f ε,xρ,σ

)
,Dgm (fρ,σ)

)
≤ lim

ε→0

1

ε

∥∥f ε,xρ,σ − fρ,σ∥∥∞ .
Using Propositions A.2 and A.3, we know that the sequence {Jε,x} is equi-coercive, and
Jε,x Γ–converges to J as ε→ 0. From the fundamental theorem of Γ–convergence (Braides, 2002)
we have that

∥∥f ε,xρ,σ − fρ,σ∥∥Hσ → 0, and, consequently,
∥∥f ε,xρ,σ − fρ,σ∥∥∞ → 0 as ε→ 0. Thus,

lim
ε→0

1

ε

∥∥f ε,xρ,σ − fρ,σ∥∥∞ =

∥∥∥∥lim
ε→0

f ε,xρ,σ − fρ,σ
ε

∥∥∥∥
∞
. (5)

Let the limit in the right hand side of Eq. (5) be denoted by ḟρ,σ. Although ḟρ,σ does not admit a
closed-form solution, from (Kim and Scott, 2012, Theorem 8) we have that ḟρ,σ satisfies V = aḟρ,σ+B,
where

V = ϕ
(
‖Φσ(x)− fρ,σ‖Hσ

)
· (Φσ(x)− fρ,σ) ,

a =

∫
Rd
ϕ
(
‖Φσ(y)− fρ,σ‖Hσ

)
dP(y), and

B =

∫
Rd

ϕ′
(
‖Φσ(y)− fρ,σ‖Hσ

)
‖Φσ(y)− fρ,σ‖Hσ

〈
ḟρ,σ,Φσ(y)− fρ,σ

〉
Hσ
· (Φσ(y)− fρ,σ)

 dP(y).

For brevity, we adopt the notation z(y) = ‖Φσ(y)− fρ,σ‖Hσ and u(·,y) =
Φσ(y)−fρ,σ

‖Φσ(y)−fρ,σ‖Hσ
∈ Hσ.

Then note that a ∈ R and B ∈ Hσ are given by

a =

∫
Rd
ϕ (z(y)) dP(y), and

B =

∫
Rd
z(y)ϕ′ (z(y))

〈
ḟρ,σ, u(·,y)

〉
Hσ
u(·,y) dP(y).
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Using the reverse triangle inequality we have

‖V ‖Hσ ≥ a
∥∥∥ḟρ,σ∥∥∥

Hσ
− ‖B‖Hσ . (6)

We now look for an upper bound on ‖B‖Hσ . By noting that〈
ḟρ,σ, u(·,x)

〉
Hσ

〈
ḟρ,σ, u(·,y)

〉
Hσ

〈
u(·,x), u(·,y)

〉
Hσ
≤
∥∥∥ḟρ,σ∥∥∥2

Hσ
,

we have

‖B‖2Hσ =
〈
B,B

〉
Hσ
≤
∫∫

z(x)ϕ′(z(x))z(y)ϕ′(z(y))
∥∥∥ḟρ,σ∥∥∥2

Hσ
dP(x) dP(y)

=
∥∥∥ḟρ,σ∥∥∥2

Hσ

(∫
Rd
z(y)ϕ′(z(y)) dP(y)

)2

.

Plugging this back into Eq. (6) we get

‖V ‖Hσ ≥
∥∥∥ḟρ,σ∥∥∥

Hσ

∫
Rd
ϕ(z(y))− z(y)ϕ′(z(y)) dP(y)

=
∥∥∥ḟρ,σ∥∥∥

Hσ

∫
Rd
ζ(z(y)) dP(y), (7)

where ζ(z) = ϕ(z)− zϕ′(z). Similarly, by using the definition of ϕ, it follows that

‖V ‖Hσ = ϕ
(
‖Φσ(x)− fρ,σ‖Hσ

)
· ‖Φσ(x)− fρ,σ‖Hσ = ρ′

(
‖Φσ(x)− fρ,σ‖Hσ

)
.

Combining this with Eq. (7) we get

∥∥∥ḟρ,σ∥∥∥
Hσ
≤

ρ′
(
‖Φσ(x)− fρ,σ‖Hσ

)
∫
Rd ζ

(
‖Φσ(y)− fρ,σ‖Hσ

)
dP(y)

.

By noting that
∥∥∥ḟρ,σ∥∥∥

∞
≤ ‖Kσ‖

1
2∞

∥∥∥ḟρ,σ∥∥∥
Hσ

and Ψ(fρ,σ;x) ≤
∥∥∥ḟρ,σ∥∥∥

∞
, the result follows. �

6.2 Supplementary Results for the Persistence Influence

In this section, we collect the proofs for the results on persistence influence established in Remark 4.1
from Section 4.1. The following result shows that when ϕ is nonincreasing, the persistence influence
in Eq. (3) can be written in a more succinct form.

Proposition 6.1. Under the conditions of Theorem 4.1, if ϕ is nonincreasing, then the persistence
influence of x ∈ Rd on Dgm (fρ,σ) satisfies

Ψ (fρ,σ;x) ≤ ‖Kσ‖
1
2∞wσ(x) ‖Φσ(x)− fρ,σ‖Hσ ,

where wσ is the measure of inlyingness from Eq. (2).
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Proof. From Theorem 4.1 we have that the persistence influence satisfies

Ψ (fρ,σ;x) ≤ ‖Kσ‖
1
2∞ ρ
′
(
‖Φσ(x)− fρ,σ‖Hσ

)(∫
Rd
ζ
(
‖Φσ(y)− fρ,σ‖Hσ

)
dP(y)

)−1

, (8)

where ζ(z) = ϕ(z)− zϕ′(z). When ϕ is nonincreasing, observe that zϕ′(z) ≤ 0 for all 0 ≤ z <∞.
Consequently, ζ can be bounded below by ϕ, and the r.h.s. in Eq. (8) can be bounded above by

Ψ (fρ,σ;x)
(i)

≤ ‖Kσ‖
1
2∞

ρ′
(
‖Φσ(x)− fρ,σ‖Hσ

)
∫
Rd ϕ

(
‖Φσ(y)− fρ,σ‖Hσ

)
dP(y)

(ii)
= ‖Kσ‖

1
2∞

ϕ
(
‖Φσ(x)− fρ,σ‖Hσ

)
∫
Rd ϕ

(
‖Φσ(y)− fρ,σ‖Hσ

)
dP(y)

‖Φσ(x)− fρ,σ‖Hσ

(iii)
= ‖Kσ‖

1
2∞wσ(x) ‖Φσ(x)− fρ,σ‖Hσ ,

where (i) follows from the fact that ζ(z) ≥ ϕ(z), (ii) follows from the definition of ϕ, i.e., ρ′(z) = zϕ(z),
and (iii) follows from the definition of wσ in Eq. (2), yielding the desired result. �

The following result establishes the bound for the distance-to-measure described in Eq. (4).

Proposition 6.2. For P ∈M(Rd), the persistence influence for the distance-to-measure function is
given by

Ψ (dP,m;x) ≤ 2√
m

sup

{∣∣∣f(x)−
∫
Rd
f(y)dP(y)

∣∣∣ : ‖∇f‖L2(P) ≤ 1

}
where ‖∇f‖L2(P) is a modified, weighted Sobolev norm (Villani, 2003; Peyre, 2018).

Proof. From (Chazal et al., 2011, Theorem 3.5) the following stability result holds:∥∥dP,m − dPεx,m∥∥∞ ≤ 1√
m
W2 (P,Pεx) .

From (Peyre, 2018, Theorem 1) we have that

W2 (P,Pεx) ≤ 2 ‖P− Pεx‖Ḣ−1(P) ,

where the weighted, homogeneous Sobolev norm ‖·‖Ḣ−1(µ) for a signed measure ν w.r.t. a positive
measure µ is given by

‖ν‖Ḣ−1(µ) = sup

{∣∣∣∫
Rd
f(x)dν(x)

∣∣∣ : ‖∇f‖L2(µ) ≤ 1

}
.

Observe that P− Pεx = ε (δx − P) and since ‖·‖Ḣ−1(µ) defines a norm, we have that

lim
ε→0

1

ε

∥∥dP,m − dPεx,m∥∥∞ ≤ 1√
m

lim
ε→0

1

ε
W2 (P,Pεx)

≤ 2√
m

lim
ε→0

1

ε
‖ε (δx − P)‖Ḣ−1(P)

=
2√
m
‖(δx − P)‖Ḣ−1(P)

=
2√
m

sup

{∣∣∣f(x)−
∫
Rd
f(y)dP(y)

∣∣∣ : ‖∇f‖L2(P) ≤ 1

}
.
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From the stability for persistence diagrams, we have that

Ψ (dP,m;x) ≤ lim
ε→0

1

ε

∥∥dP,m − dPεx,m∥∥∞
and the result follows. �

6.3 Proof of Theorem 4.2

Using the triangle inequality we can break our problem down as follows∥∥fnρ,σ − f∥∥∞ ≤ ‖fσ − f‖∞︸ ︷︷ ︸
a

+ ‖fρ,σ − fσ‖∞︸ ︷︷ ︸
b

,

where, fσ =
∫
Rd Kσ(·,x)dP(x) is the population level KDE. For term a , when P ∈ M(Rd), it is

well known (Chen, 2017) that the approximation error for the KDE vanishes, i.e.,

‖fσ − f‖∞ → 0,

as σ → 0. So, it remains to verify that b vanishes, i.e., ‖fρ,σ − fσ‖∞ → 0. With this in mind,
consider the map Tσ : G → G given by

Tσ(g) =

∫
Rd

ϕ
(
‖Φσ (x)− g‖Hσ

)∫
Rd
ϕ
(
‖Φσ (x)− g‖Hσ

)
dP(x)

Φσ(x)dP(x).

Our approach to verifying that b vanishes is similar to Vandermeulen and Scott (2013, Lemma 9),
where we show that the map Tσ is a contraction map when restricted to the subspace

Qσ =· BHσ (0, δνσ) ∩Dσ.

A key difference is that we work with ‖·‖∞–norm, requiring us to obtain a sharper bound for the
Lipschitz constant associated with the contraction.

For brevity, we adopt the notation m(x, g) = ϕ
(
‖Φσ (x)− g‖Hσ

)
. Kim and Scott (2012) show that

fρ,σ is a fixed point of the map Tσ, i.e., Tσ(fρ,σ) = fρ,σ, and that fσ is the image of 0 under Tσ, i.e.,
Tσ(0) = fσ. Additionally, from Lemma A.2, we know that ‖fσ‖Hσ ≤ δνσ, for some 0 < δ < 1. Thus,
we can rewrite fρ,σ − fσ = Tσ(fρ,σ)− Tσ(0).

Let g, h ∈ Qσ. Then we have that

Tσ(g)− Tσ(h) =

∫
Rd

m(x, g)∫
Rd
m(y, g)dP(y)

Φσ(x)dP(x)−
∫
Rd

m(u, h)∫
Rd
m(v, h)dP(v)

Φσ(u)dP(u)

=
1

αβ
·

β ∫
Rd

m(x, g)Φσ(x)dP(x)− α
∫
Rd

m(u, h)Φσ(u)dP(x)


=

1

αβ
· ξ, (9)

where α =·
∫
Rdm(y, g)dP(y) ∈ R, β =·

∫
Rdm(v, h)dP(v) ∈ R and the numerator ξ ∈ Hσ.
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By Tonelli’s theorem

ξ = β

∫
Rd

m(x, g)Φσ(x)dP(x)− α
∫
Rd

m(u, h)Φσ(u)dP(x)

=

∫
Rd

m(x, g)Φσ(x)

∫
Rd

m(v, h)dP(v)

 dP(x)

−
∫
Rd

m(u, h)Φσ(u)

∫
Rd

m(y, g)dP(y)

 dP(x)

=

∫∫
Rd×Rd

m(x, g)m(v, h)Φσ(x)dP(v)dP(x)−
∫∫

Rd×Rd

m(u, h)m(y, g)Φσ(u)dP(y)dP(u)

=

∫∫
Rd×Rd

Φσ(x) [m(x, g)m(y, h)−m(x, h)m(y, g)] dP(x)dP(y). (10)

Then by adding and subtracting m(x, h)m(y, h) to the term inside, we get

m(x, g)m(y, h)−m(x, h)m(y, g) = m(y, h) {m(x, g)−m(x, h)}
+m(x, h) {m(y, h)−m(y, g)} .

Plugging this back into Eq. (10), we get ξ = ξ1 + ξ2 where

ξ1 =

∫∫
Rd×Rd

Φσ(x) {m(x, g)−m(x, h)}m(y, h)dP(y)dP(x)

=

∫
Rd

m(y, h)dP(y)

∫
Rd

Φσ(x) {m(x, g)−m(x, h)} dP(x)

= β

∫
Rd

Kσ(·,x) {m(x, g)−m(x, h)} dP(x)

(i)
= β · [ψσ ∗ ((m(·, g)−m(·, h)) f(·))] ,

where (i) follows from the fact that the kernel Kσ(x,y) = ψσ(x − y) =· σ−dψ(‖x − y‖2/σ) is
translation invariant and f is the density associated with P. Similarly,

ξ2 =

∫∫
Rd×Rd

Φσ(x)m(x, h) {m(y, h)−m(y, g)} dP(x)dP(y)

=

∫
Rd

[m(y, h)−m(y, g)] dP(y)

∫
Rd

Φσ(x)m(x, h)dP(x)

≤ ‖m(·, h)−m(·, g)‖∞ · [ψσ ∗ (m(·, h)f(·))] .
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The upper bound for ‖ξ1‖∞ is as follows

‖ξ1‖∞ = β ‖ψσ ∗ ((m(·, g)−m(·, h)) f(·))‖∞
(i)

≤ β ‖ψσ‖1 ‖(m(·, g)−m(·, h)) f(·)‖∞
(ii)

≤ β ‖m(·, g)−m(·, h)‖∞ ‖f‖∞ , (11)

where (i) follows from Young’s inequality (Hewitt and Ross, 1979, Theorem 20.18) and (ii) follows
from the fact that ‖fg‖∞ ≤ ‖f‖∞ ‖g‖∞. Similarly, for ξ2 we have

‖ξ2‖∞ ≤ ‖m(·, h)−m(·, g)‖∞ ‖ψσ ∗ (m(·, h)f(·))‖∞
(i)

≤ ‖m(·, h)−m(·, g)‖∞ ‖ψσ‖1 ‖m(·, h)f(·)‖∞
(ii)

≤ ‖m(·, h)−m(·, g)‖∞ ‖m(·, h)‖∞ ‖f‖∞ . (12)

From the proof of (Vandermeulen and Scott, 2013, Lemma 9, Page 20–22), for g, h ∈ Qσ for fixed
constants c1, c2 > 0 we have the following two bounds:

α, β ≥ 1

c1νσ
, (13)

and

‖m(·, h)−m(·, g)‖∞ ≤ ‖g − h‖Hσ c2ν
−2
σ , (14)

where the last inequality follows from the Lipschitz property of ϕ and fact that ρ is strictly convex.
Additionally, for c3 = ‖ρ′‖∞ <∞ we have

m(x, g) = ϕ
(
‖Φσ (x)− g‖Hσ

)
=
ρ′
(
‖Φσ (x)− g‖Hσ

)
‖Φσ (x)− g‖Hσ

≤ c3

‖Φσ (x)− g‖Hσ
(iii)

≤ c3∣∣∣‖Φσ(x)‖Hσ − ‖g‖Hσ
∣∣∣

=
c3

(1− δ)νσ
, (15)

where (iii) follows from reverse triangle inequality. Plugging the bounds in equations (13), (14) and
(15) back into equations (11) and (12) we get,

‖ξ1‖∞ + ‖ξ2‖∞ ≤ ‖f‖∞
(
βc2ν

−2
σ ‖g − h‖Hσ +

c2c3

(1− δ)
ν−3
σ ‖g − h‖Hσ

)
.
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Using this upper bound in Eq. (9) we get

‖Tσ(g)− Tσ(h)‖∞ =

∥∥∥∥ ξ

αβ

∥∥∥∥
∞

≤
‖ξ1‖∞ + ‖ξ2‖∞

αβ
(iv)

≤ ‖f‖∞
(
c1c2

c1
ν−1
σ ‖g − h‖Hσ +

c2c3

c2
1(1− δ)

ν−1
σ ‖g − h‖Hσ

)
(v)
= Cν−1

σ ‖g − h‖Hσ
(vi)

≤ Cν−1
σ ‖g − h‖

1
2∞ ,

where in (iv) we use Eq. (13), in (v) we use the fact that whenever P ∈M(Rd), we have ‖f‖∞ <∞
and C > 0 is a constant depending only on c1, c2, c3 and ‖f‖∞. Additionally, (vi) holds through an
application of Lemma A.1 to g − h ∈ Qσ ⊂ Dσ. This confirms that Tσ is a contraction mapping.
We use this to show that b vanishes as σ → 0. Since fρ,σ,0 ∈ Qσ and fρ,σ − 0 ∈ Dσ, we have that

‖fρ,σ − fσ‖∞ = ‖Tσ(fρ,σ)− Tσ(0)‖∞
≤ Cν−1

σ ‖fρ,σ − 0‖
1
2
∞

= Cν−1
σ ‖fρ,σ‖

1
2
∞ .

Using the triangle inequality ‖fρ,σ‖
1
2
∞ ≤ ‖fρ,σ − fσ‖

1
2
∞ + ‖fσ‖

1
2∞ we get

‖fρ,σ − fσ‖∞ ≤ Cν
−1
σ

(
‖fρ,σ − fσ‖

1
2
∞ + ‖fσ‖

1
2∞

)
= Cν−1

σ

(
‖Tσ (fρ,σ)− Tσ(0)‖

1
2
∞ + ‖fσ‖

1
2∞

)
≤ Cν−1

σ

((
Cν−1

σ ‖fρ,σ − 0‖
1
2
∞

) 1
2

+ ‖fσ‖
1
2∞

)
= C

3
2 ν
− 3

2
σ ‖fρ,σ‖

1
4
∞ + Cν−1

σ ‖fσ‖
1
2∞ , (16)

by using the contraction mapping twice. Observe that

‖fρ,σ‖∞ ≤ νσ ‖fρ,σ‖Hσ ≤ δν
2
σ,

where the first inequality follows from Lemma A.1 and the second inequality follows from the fact
that ‖fρ,σ‖Hσ ≤ δνσ since fρ,σ ∈ Qσ. Furthermore, ‖fσ‖∞ = ‖ψσ ∗ f‖∞ ≤ ‖ψσ‖∞ ‖f‖1 ≤ νσ from
Young’s inequality. By noting that νσ = ψσ(0) = σ−dψ(0), collecting these bounds back into Eq. (16)
we get

‖fρ,σ − fσ‖∞ ≤ C
3
2 δ

1
4 ν−1
σ + Cν

− 1
2

σ

√
ψ(0).

yielding that ‖fρ,σ − fσ‖∞ → 0 as σ → 0, thereby verifying that b vanishes as σ → 0. �
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6.4 Proof of Theorem 4.3

The proof proceeds in two steps: We first establish the uniform consistency for the robust KDE
and then use the bottleneck stability to show consistency of the robust persistence diagrams in
W∞. From the stability theorem for persistence diagrams (Cohen-Steiner et al., 2007; Chazal et al.,
2016), we have that W∞

(
Dgm

(
fnρ,σ

)
,Dgm (fρ,σ)

)
≤
∥∥fnρ,σ − fρ,σ∥∥∞. Thus, it suffices to show that∥∥fnρ,σ − fρ,σ∥∥∞ p→ 0 as n → ∞. In order to prove the latter, we adapt the argmax consistency

theorem (Van der Vaart, 2000, Theorem 5.7) for minimizers of a risk function.

Lemma 6.1 (Theorem 5.7, Van der Vaart (2000)). Given a metric space (G, d), let Jn be random
functions and J be a fixed function of g ∈ G such that for every ε > 0,

(1) inf
g:d(g,g0)≥ε

J (g) > J (g0), and

(2) sup
g∈G
|Jn(g)− J (g)| p→ 0.

Then any sequence gn satisfying Jn(gn) < Jn(g0) +Op(1) satisfies d(gn, g0)
p→ 0.

For G = Hσ ∩Dσ, and d(fnρ,σ, fρ,σ) =
∥∥fnρ,σ − fρ,σ∥∥∞, in order to establish uniform consistency of

the robust KDE, as per Lemma 6.1, we need to verify that conditions (1) and (2) are satisfied.

Condition (1) follows from the strict convexity of J (g) in Proposition A.1. Specifically, Kim and
Scott (2012) establish that assumptions (A1)−(A3) guarantee the existence and uniqueness of fρ,σ =
arg infg∈G J (g). Then, for any g ∈ G such that ‖g − fρ,σ‖Hσ > δ, we have that J (g) > J (fρ,σ).

We now turn to verifying condition (2). Observe that supg∈G |Jn(g)− J (g)| can be rewritten as the
supremum of an empirical process, i.e.,

sup
g∈G
|Jn(g)− J (g)| = sup

`g∈F̃
|Pn`g − P`g| =· ‖Pn − P‖F̃ ,

where F̃ = {`g : g ∈ G}, and `g(x) = ρ
(
‖Φσ(x)− g‖Hσ

)
. Verifying condition (2) reduces to showing

that F̃ is a Glivenko-Cantelli class.

Define η(·) = ‖Φσ(·)− g‖2Hσ and let F = {ηg : g ∈ G}. For the continuous map ξ : [0,∞)→ [0,∞)

given by ξ(t) = ρ(
√
t), we have that

ξ ◦ F = {ξ(f) : f ∈ F} = {ξ ◦ ηg(·) : g ∈ G} =
{
ρ(‖Φσ(·)− g‖Hσ) : g ∈ G

}
= F̃ .

By the preservation theorem for Glivenko-Cantelli classes (Van Der Vaart and Wellner, 2000, Theorem
3), it holds that if F is a Glivenko-Cantelli class, then F̃ is also a Glivenko-Cantelli class. So verifying
condition (2) reduces to verifying that F is a Glivenko-Cantelli class.

To this end, we first show that F (x1:n) = F (x1,x2, . . . ,xn) = supg∈G |Pnηg − Pηg| = ‖Pn − P‖F
satisfies the self-bounded property for McDiarmid’s inequality, i.e.,

sup
xi 6=x′i

∣∣F (x1:n)− F (x′1:n)
∣∣ ≤ 1

n
sup
xi,x′i

sup
g∈G

(
‖Φσ(xi)‖2Hσ +

∥∥Φσ(x′i)
∥∥2

Hσ
+ 2 |g(xi)|+ 2

∣∣g(x′i)
∣∣) .
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Observe that ‖Φσ(x)‖2Hσ = Kσ(x,x) ≤ ‖Kσ‖∞ and |g(x)| ≤ ‖g‖∞ < ‖Kσ‖∞ by Lemma A.1. Thus,
we have that

sup
xi 6=x′i

∣∣F (x1:n)− F (x′1:n)
∣∣ ≤ 6 ‖Kσ‖∞

n
.

From (Bartlett and Mendelson, 2002, Theorem 9), we have that with probability greater than 1−e−δ,

‖Pn − P‖F ≤ 2Rn(F) +

√
3δ ‖Kσ‖∞

n
, (17)

where Rn(F) is the Rademacher complexity of F given by,

Rn(F) = Eε

(
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

εi ‖Φσ(xi)− g‖2Hσ

∣∣∣∣∣
)

≤ Eε

(
sup
g∈G

{∣∣∣∣∣ 1n
n∑
i=1

εi ‖Φσ(xi)‖2Hσ

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

εi ‖g‖2Hσ

∣∣∣∣∣+ 2

∣∣∣∣∣ 1n
n∑
i=1

εig(xi)

∣∣∣∣∣
})

= 1 + 2 + 3 .

Note that Eε (f(ε1:n,x1:n)) =· E (f(ε1:n,x1:n)|x1:n) is the conditional expectation of the Rademacher
random variables ε1, ε2, . . . , εn, keeping x1,x2, . . . ,xn fixed. First, we have that,

1 = Eε

(
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

εi ‖Φσ(xi)‖2Hσ

∣∣∣∣∣
)

(i)
= Eε

∣∣∣∣∣ 1n
n∑
i=1

εiKσ(xi,xi)

∣∣∣∣∣
(ii)

≤

√√√√Eε

∣∣∣∣∣ 1n
n∑
i=1

εiKσ(xi,xi)

∣∣∣∣∣
2

≤

√√√√√Eε

 1

n2

∑
i,j

εiεjKσ(xi,xi)Kσ(xj ,xj)


(iii)
=

1√
n
‖Kσ‖∞ ,

where (i) follows from the absence of g inside the expectation, (ii) follows from Jensen’s inequality
and (iii) follows from the fact that εi ⊥⊥ εj for i 6= j. For the second term, we have

2 = Eε

(
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

εi ‖g‖2Hσ

∣∣∣∣∣
)

= Eε

(
sup
g∈G
‖g‖2Hσ

∣∣∣∣∣ 1n
n∑
i=1

εi

∣∣∣∣∣
)

≤ sup
g∈G
‖g‖2Hσ

√√√√Eε

∣∣∣∣∣ 1n
n∑
i=1

εi

∣∣∣∣∣
2

,

(iv)

≤ 1√
n
‖Kσ‖∞ ,
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where (iv) follows from the fact that ‖g‖2Hσ ≤ ‖Kσ‖∞. Lastly, we have

3 = 2Eε

(
sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

εig(xi)

∣∣∣∣∣
)

(v)
= 2Eε

(
sup
g∈G

∣∣∣∣∣〈g, 1

n

n∑
i=1

εiKσ(·,xi)
〉
Hσ

∣∣∣∣∣
)

(vi)

≤ 2Eε

sup
g∈G
‖g‖Hσ

∥∥∥∥∥ 1

n

n∑
i=1

εiKσ(·,xi)

∥∥∥∥∥
Hσ


= 2 sup

g∈G
‖g‖Hσ Eε

√ 1

n2

∑
i,j

εiεjKσ(xi,xj)


(vii)

≤ 2
‖Kσ‖

1
2∞

n

√√√√√Eε

∑
i,j

εiεjKσ(xi,xj)


(viii)

≤ 2√
n
‖Kσ‖∞ ,

where (v) follows from the reproducing property, (vi) is obtained from Cauchy-Schwarz inequality,
(vii) follows from Jensen’s inequality, and (viii) follows from the fact that εi ⊥⊥ εj for i 6= j. Collecting
these three inequalities, we have

Rn(F) = 1 + 2 + 3 ≤ 4√
n
‖Kσ‖∞ .

Plugging this into Eq. (17), we have with probability greater than 1− e−δ,

‖Pn − P‖F ≤
8 ‖Kσ‖∞√

n
+

√
3δ ‖Kσ‖∞

n
,

which implies that ‖Pn − P‖F → 0 as n → ∞, implying that F is a Glivenko-Cantelli class. The
result, therefore, follows from Lemma 6.1. �

6.5 Proof of Theorem 4.4

For g ∈ G define the random fluctuation w.r.t. fρ,σ as

∆ (X, g) =
(
`g(X)− `fρ,σ(X)

)
− (J (g)− J (fρ,σ)) .

The fluctuation process is an empirical process defined as

∆n(g) = Pn∆(X, g) = (Jn(g)− Jn(fρ,σ))− (J (g)− J (fρ,σ)) ,

= Pn
(
`g − `fρ,σ

)
− P

(
`g − `fρ,σ

)
.

We first show that the behaviour of
∥∥fnρ,σ − fρ,σ∥∥Hσ is controlled by the tail behaviour of the

supremum of the fluctuation process. To this end, for δ > 0, let

Gδ =
{
g ∈ G : ‖g − fρ,σ‖Hσ ≤ δ

}
= BHσ (fρ,σ, δ) ∩Dσ.
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Suppose fnρ,σ is such that
∥∥fnρ,σ − fρ,σ∥∥Hσ > δ, then, for sufficiently small λ ∈ (0, 1) such that

g = λfnρ,σ + (1− λ)fρ,σ ∈ Gδ, we have that

Jn(g)− Jn(fρ,σ)
(i)
< λJn(fnρ,σ) + (1− λ)Jn(fρ,σ)− Jn(fρ,σ)

= λ ·
(
Jn(fnρ,σ)− Jn(fρ,σ)

) (ii)

≤ 0, (18)

where (i) follows from the strict convexity of Jn (Proposition A.1), and (ii) follows from the fact that
fnρ,σ = arg infg∈G Jn(g). From Proposition A.1, we also know that J is strongly convex such that

J (g)− J (fρ,σ) ≥ µ

2
‖g − fρ,σ‖2Hσ . (19)

Combining equations (18) and (19) we have
µ

2
‖g − fρ,σ‖2Hσ ≤ J (g)− J (fρ,σ),

=−
{

(Jn(g)− Jn(fρ,σ))− (J (g)− J (fρ,σ))
}

+ (Jn(g)− Jn(fρ,σ))

≤ −∆n(g) ≤ sup
g∈Gδ
|∆n(g)| .

By taking the supremum of the left hand side in the above inequality over all g ∈ Gδ we have

sup
g∈Gδ
|∆n(g)| ≥ µ

2
δ2 (20)

This implies that whenever
∥∥fnρ,σ − fρ,σ∥∥Hσ > δ holds, then the condition in Eq. (20) holds. Therefore,

P⊗n
{
X1:n :

∥∥fnρ,σ − fρ,σ∥∥Hσ > δ
}
≤ P⊗n

{
X1:n : sup

g∈Gδ
|∆n(g)| ≥ µ

2
δ2

}
. (21)

We now study the behaviour of the r.h.s. in Eq. (21) using tools from empirical process theory. First,
we show that F (x1:n) = F (x1,x2, . . . ,xn) = sup

g∈Gδ
|∆n(g)| satisfies the self-bounding property.

sup
xi 6=x′i

∣∣F (x1:n)− F (x′1:n)
∣∣ = sup

xi 6=x′i

∣∣∣ sup
g∈Gδ
|∆n(g)| − sup

g∈Gδ
|∆n(g)|

∣∣∣,
≤ sup

xi 6=x′i

sup
g∈Gδ

∣∣∣∆n(g)−∆′n(g)
∣∣∣,

=
1

n
sup
xi 6=x′i

sup
g∈Gδ

∣∣∣(`g(xi)− `fρ,σ(xi)
)
−
(
`g(x

′
i)− `fρ,σ(x′i)

)∣∣∣,
≤ 1

n
sup
xi 6=x′i

sup
g∈Gδ

∣∣∣(`g(xi)− `fρ,σ(xi)
)∣∣∣+

∣∣∣(`g(x′i)− `fρ,σ(x′i)
)∣∣∣,

(i)

≤ 1

n
sup
g∈Gδ

2M ‖g − fρ,σ‖Hσ =
2Mδ

n
,

where (i) follows from Proposition A.1 that `g is M -Lipschitz w.r.t. ‖·‖Hσ . Therefore, from
McDiarmid’s inequality (Vershynin, 2018, Theorem 2.9.1) we have

P⊗n
{
X1:n : sup

g∈Gδ
|∆n(g)| > E sup

g∈Gδ
|∆n(g)|+ ε

}
≤ exp

(
− nε2

2M2δ2

)
. (22)
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Next, we find an upper bound for the expected supremum of the fluctuation process. In order to
do so, we first show that ∆n(g) has sub-Gaussian increments. For fixed g, h ∈ G we have that
E (∆(X, g)−∆(X, h)) = 0 and∣∣∣∆(X, g)−∆(X, h)

∣∣∣ ≤ ∣∣∣`g(X)− `h(X)
∣∣∣− ∣∣∣J (g)− J (h)

∣∣∣ ≤ 2M ‖g − h‖Hσ .

Since
∣∣∣∆(X, g) − ∆(X, h)

∣∣∣ is bounded, it is, therefore, sub-Gaussian and from Vershynin (2018,
Example 2.5.8), we have that the sub-Gaussian norm ‖∆(X, g)−∆(X, h)‖ψ2

≤ 2cM ‖g − h‖Hσ for
c > 1/

√
log 2. Consequently, the fluctuation process has sub-Gaussian increments with respect to

the metric ‖g − h‖Hσ , i.e.,

‖∆n(g)−∆n(h)‖ψ2
≤ 1

n

√√√√ n∑
i=1

‖∆(Xi, g)−∆(Xi, h)‖2ψ2
≤ M√

n
‖g − h‖Hσ .

From the generalized entropy integral (Srebro et al., 2010, Lemma A.3), for a fixed constant
γ > 12/

√
log 2 we have

E sup
g∈Gδ
|∆n(g)| ≤ inf

α>0

{
2α+

γM√
n

∫ δ

α

√
logN

(
Gδ, ‖·‖Hσ , ε

)
dε

}
, (23)

where N (Gδ, d, ε) is the ε-covering number of the class Gδ with respect to metric d.

We now turn our attention to finding an upper bound for N (Gδ, d, ε). Note that if BHσ is a unit
ball in the RKHS, then

logN
(
Gδ, ‖·‖Hσ , ε

)
= logN

(
BHσ ∩Dσ, ‖·‖Hσ ,

ε

δ

)
(i)

≤ logN
(
BHσ ∩Dσ, ‖·‖∞ ,

( ε
δ

)2
)

≤ logN
(
BHσ , ‖·‖∞ ,

( ε
δ

)2
)
,

where (i) follows from Lemma A.1 that ‖g − h‖2Hσ ≤ ‖g − h‖∞. When the entropy numbers
en (id : Hσ → L∞(X)) satisfy the assumption, from (Steinwart and Christmann, 2008, Lemma 6.21)
we have

logN
(
BHσ , ‖·‖∞ ,

( ε
δ

)2
)
≤
(
aσδ

2

ε2

)2p

.

Plugging this into Eq. (23), we have that

E sup
g∈Gδ
|∆n(g)| ≤ inf

α>0

{
2α+

γMaσδ
2p

√
n

∫ δ

α
ε−2pdε

}
= inf

α>0
T (α),

where T (α) is given by

T (α) =


2α+ γMδ

√
aσ
n log

(
δ
α

)
if p = 1

2 ,

2α+ γM
(1−2p)

√
n

(
δ − δ2pα1−2p

)
if 0 < p 6= 1

2 < 1.
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At the value α0 where T (α0) = infα>0 T (α), we have

T (α0) =


γCa

1
2
σ · Mδ log(n)√

n
if p = 1

2 ,

γapσ
(1−2p) ·

Mδ√
n
− Kpa

1
2
σ

(1−2p) ·
Mδ
n1/4p if 0 < p 6= 1

2 < 1,

(24)

for some fixed constant C > 3− log(9a). Observe that when 0 < p < 1
2 , the last term of Eq. (24)

is negative, and similarly when 1
2 < p < 1, the first term is negative. From this, we have that

T (α0) ≤Mδξ(n, p) where

ξ(n, p) =



γapσ
(1−2p) ·

1√
n

if 0 < p < 1
2 ,

γCa
1
2
σ · log(n)√

n
if p = 1

2 ,

γpa
1
2
σ

2p−1 ·
1

n1/4p if 1
2 < p < 1.

Plugging this into Eq. (22), we have that with probability greater than 1− e−t,

sup
g∈Gδ
|∆n(g)| < Mδξ(n, p) +Mδ

√
2t

n
. (25)

From Eq. (21), this implies that

P⊗n
{
X1:n :

∥∥fnρ,σ − fρ,σ∥∥Hσ > δ
}
≤ P⊗n

{
X1:n : sup

g∈Gδ
∆n(g) ≥ µδ2

2

}
.

Thus, in Eq. (25), by letting

µδ2

2
=

(
Mδξ(n, p) +Mδ

√
2t

n

)
,

we have that with probability greater than 1− e−t,∥∥fnρ,σ − fρ,σ∥∥Hσ ≤ 2M

µ

(
ξ(n, p) +

√
2t

n

)
.

Observe that
∥∥fnρ,σ − fρ,σ∥∥∞ ≤ ‖Kσ‖

1
2∞
∥∥fnρ,σ − fρ,σ∥∥Hσ . For 0 < α < 1, by choosing δn as

δn =
2M ‖Kσ‖

1
2∞

µ

(
ξ(n, p) +

√
2 log(1/α)

n

)
,

we have that

P⊗n
{
X1:n :

∥∥fnρ,σ − fρ,σ∥∥∞ ≤ δn} > 1− α.

From the stability of persistence diagrams in Proposition 2.1, this implies that

P⊗n
{
X1:n : W∞

(
Dgm

(
fnρ,σ

)
,Dgm (fρ,σ)

)
> δn

}
≤ α,

yielding the desired result. �
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7 Conclusion & Discussion

In this paper, we proposed a statistically consistent robust persistent diagram using RKHS-based
robust KDE as the filter function. By generalizing the notion of influence function to the space
of persistence diagrams, we mathematically and empirically demonstrated the robustness of the
proposed method to that of persistence diagrams induced by other filter functions such as KDE.
Through numerical experiments, we demonstrated the advantage of using robust persistence diagrams
in machine learning applications.

We would like to highlight that most of the theoretical results of this paper crucially hinge on the
loss function being convex. As a future direction, we would like to generalize the current results
to non-convex loss functions, which potentially yield more robust persistence diagrams. Another
important direction we intend to explore is to develop robust persistence diagrams induced by other
types of robust density estimators, which enables to understand the power and limitation of the
proposed method.
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A Supplementary Results

In this section, we establish some results which play a key role in the proofs presented in Section 6.

A.1 Properties of the Risk Functional J (g)

We establish some important properties of the risk functional, given by

J (g) =

∫
Rd
`g(x) dP(x) =

∫
Rd
ρ
(
‖Φσ(x)− g‖Hσ

)
dP(x).

The following result establishes that some important properties of the robust loss ρ carry forward to
J (g). (i) The Lipschitz property of ρ is inherited by J (g), (ii) the convexity of ρ is strengthened
to guarantee that J (g) is strictly convex, and (iii) J (g) is strongly convex with respect to the
‖·‖Hσ–norm around its minimizer.

Proposition A.1 (Convexity and Lipchitz properties of J ). Under assumptions (A1)− (A3),

(i) The risk functionals J (g) and Jn(g) are M -Lipschitz w.r.t. ‖·‖Hσ .

(ii) Furthermore, if ρ is convex, J (g) and Jn(g) are strictly convex.

(iii) Additionally, under assumption (A4), for fρ,σ = arg infg∈G J (g), the risk functional satisfies
the strong convexity condition

J (g)− J (fρ,σ) ≥ µ

2
‖fρ,σ − g‖2Hσ ,

for µ = 2 min

{
ϕ

(
2 ‖Kσ‖

1
2∞

)
, ρ′′

(
2 ‖Kσ‖

1
2∞

)}
.

Proof. Lipschitz property. Observe that,

|`g1(x)− `g2(x)| =
∣∣ρ (‖Φσ(x)− g1‖Hσ

)
− ρ

(
‖Φσ(x)− g2‖Hσ

)∣∣
≤M

∣∣‖Φσ(x)− g1‖Hσ − ‖Φσ(x)− g2‖Hσ
∣∣

≤M ‖g1 − g2‖Hσ ,

where the first inequality follows from the fact that ρ is M -Lipschitz and the last inequality follows
from reverse triangle inequality. This shows that the loss functions `g(·) are M -Lipschitz with respect
to g. For the risk functionals, we have that,

|J (g1)− J (g2)| =

∣∣∣∣∣∣
∫
Rd

(`g1(x)− `g2(x)) dP(x)

∣∣∣∣∣∣
≤
∫
Rd

∣∣∣`g1(x)− `g2(x)
∣∣∣dP(x)

≤M ‖g1 − g2‖Hσ ,

where the first inequality follows from Jensen’s inequality. This verifies that J (g) is M -Lipchitz.
The proof for Jn(g) is identical.
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Strict Convexity. We begin by establishing that for translation invariant kernels ‖Φσ(x)− ·‖Hσ is
strictly convex. Suppose g1, g2 ∈ Hσ ∩Dσ and λ ∈ (0, 1), and let g = (1− λ)g1 + λg2. Then

‖Φσ(x)− g‖2Hσ = ‖(1− λ)(Φσ(x)− g1) + λ(Φσ(x)− g2)‖2Hσ
= (1− λ)2 ‖Φσ(x)− g1‖2Hσ

+ λ2 ‖Φσ(x)− g2‖2Hσ + 2λ(1− λ)
〈

Φσ(x)− g1,Φσ(x)− g2

〉
Hσ
. (A.1)

From Cauchy-Schwarz inequality, we know that〈
Φσ(x)− g1,Φσ(x)− g2

〉
Hσ
≤ ‖Φσ(x)− g1‖Hσ ‖Φσ(x)− g2‖Hσ .

In the following, we argue that for translation invariant kernels,〈
Φσ(x)− g1,Φσ(x)− g2

〉
Hσ

< ‖Φσ(x)− g1‖Hσ ‖Φσ(x)− g2‖Hσ , (A.2)

for g1 6= g2. On the contrary, suppose〈
Φσ(x)− g1,Φσ(x)− g2

〉
Hσ

= ‖Φσ(x)− g1‖Hσ ‖Φσ(x)− g2‖Hσ

holds. Then this implies that there is a function a(x), depending only on g1 and g2, such that
a(x) 6= 0 for x ∈ Rd and

Φσ(x)− g1 = a(x) (Φσ(x)− g2) .

Rearranging the terms this implies that

Φσ(x) =
g1 − a(x)g2

1− a(x)
= (1 + b(x))g1 + b(x)g2,

where b(x) = −a(x)/(1−a(x)) also does not vanish on x ∈ Rd. For x,y ∈ Rd, from the reproducing
property we have

Kσ(x,y) =
〈

Φσ(x),Φσ(y)
〉
Hσ

=
〈
g1 + b(x)(g1 + g2), g1 + b(y)(g1 + g2)

〉
Hσ

= b(x)b(y) ‖g1 + g2‖2Hσ + (b(x) + b(y)) 〈g1, g1 + g2〉Hσ + ‖g1‖2Hσ .

Note that because the kernel is translation invariant, i.e., Kσ(x,x) = Kσ(y,y) = σ−dψ(0), this
must imply that

0 =
(
b(x)2 − b(y)2

)
‖g1 + g2‖2Hσ + 2(b(x)− b(y))〈g1, g1 + g2〉Hσ

= (b(x)− b(y))
(

(b(x) + b(y)) ‖g1 + g2‖2Hσ + 2〈g1, g1 + g2〉Hσ
)
.

Since b(x) and b(y) are nonvanishing, the above equation is satisfied only when b(x) = b(y). This
implies that Kσ(x,y) is constant for all y, giving us a contradiction. Thus, we have that Eq. (A.2)
holds. Plugging this back in Eq. (A.1) we get that for λ ∈ (0, 1) and g = (1− λ)g1 + λg2,

‖Φσ(x)− g‖Hσ < (1− λ) ‖Φσ(x)− g1‖Hσ + λ ‖Φσ(x)− g2‖Hσ .
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Since, ρ is strictly increasing and convex, this implies that

`g(x) < (1− λ)`g1(x) + λ`g2(x).

The map `g(·) 7→ P`g is a linear operator, and `g is strictly convex in g, this implies that J (g) is
also strictly convex in g. The same holds for Jn(g).

Strong Convexity around the minimizer. We now turn our attention to the strong convexity
property. For this, we first show that J (g) is twice Gâteaux differentiable. Let g, h ∈ G, then the
second Gâteaux derivative of the loss `g(x) = ρ

(
‖Φσ(x)− g‖Hσ

)
at g in the direction h is given by,

δ2`(x, g;h) =
d2

dα2
`(x, g + αh)

∣∣∣
α=0

=
d2

dα2
ρ
(
‖Φσ(x)− g − αh‖Hσ

) ∣∣∣
α=0

=
d

dα

[
ϕ
(
‖Φσ(x)− g − αh‖Hσ

) (
−〈Φσ(x)− g, h〉Hσ + α ‖h‖2Hσ

)] ∣∣∣
α=0

= ϕ
(
‖Φσ(x)− g‖Hσ

)
‖h‖2Hσ + 〈Φσ(x)− g, h〉2Hσ

ϕ′
(
‖Φσ(x)− g‖Hσ

)
‖Φσ(x)− g‖Hσ

= ϕ (z(x, g)) ‖h‖2Hσ + ‖h‖2Hσ λ(x, g, h)z(x, g)ϕ′ (z(x, g)) , (A.3)

where for a fixed g ∈ G, in the interest of brevity, we define z(x, g) = ‖Φσ(x)− g‖Hσ and

λ(x, g, h) =
〈 Φσ(x)− g
‖Φσ(x)− g‖Hσ

,
h

‖h‖Hσ

〉2

Hσ
∈ [0, 1].

Observe that zϕ′(z) = ρ′′(z)− ϕ(z), thus Eq. (A.3) becomes

δ2`(x, g;h) = ‖h‖2Hσ
(
(1− λ(x, g, h))ϕ (z(x, g)) + λ(x, g, h)ρ′′ (z(x, g))

)
.

From assumption (A4) we have that ρ′′ and ϕ are nonincreasing, and

z(x, g) = ‖Φσ(x)− g‖Hσ ≤ 2 ‖Kσ‖
1
2∞ .

Thus, we have that

δ2`(x, g;h) ≥ c ‖h‖2Hσ , (A.4)

where

c = min

{
ϕ

(
2 ‖Kσ‖

1
2∞

)
, ρ′′

(
2 ‖Kσ‖

1
2∞

)}
.

We also note that δ2`(x, g;h) is bounded above. To see this, note that from assumption (A4), ρ′′

and ϕ are bounded and nonincreasing. Consequently, for λ(x, g, h) ∈ (0, 1) and

C = max
{
ρ′′(0), ϕ(0)

}
<∞,

from Eq. (A.3) we have that

δ2`(x, g;h) ≤ C ‖h‖2Hσ <∞.
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The Gâteaux derivative of J (g) is, then, given by

δ2J (g;h) =
d2

dα2
J (g + αh)

∣∣∣
α=0

=
d2

dα2

∫
Rd

`(x, g + αh) dP(x)
∣∣∣
α=0

=

∫
Rd

d2

dα2
`(x, g + αh) dP(x)

∣∣∣
α=0

=

∫
Rd

δ2`(x, g;h) dP(x).

The exchange of the derivative and integral in the second line follows from the dominated convergence
theorem since

∣∣δ2`(x, g;h)
∣∣ is bounded. This confirms the Gâteaux differentiability of J (g). From

Eq. (A.4) we have

δ2J (g;h) =

∫
Rd

δ2`(x, g;h) dP(x) ≥ c ‖h‖2Hσ . (A.5)

For fρ,σ = arg infg∈G J (g) and g ∈ G, we proceed to show the strong-convexity guarantee. Let
h = g − fρ,σ. From the first-order Taylor approximation for J (g) we have,

J (g) = J (fρ,σ) + δJ (fρ,σ, h) +R2(fρ,σ, h),

where the first Gâteaux derivative, δJ (fρ,σ, h) = 0 for all h since fρ,σ is the unique minimizer of
J (g) and the remainder term R2(fρ,σ, h) is given by

R2(fρ,σ, h) =
1

2

∫ 1

0
(1− t)δ2J (fρ,σ + th;h) dt

≥ c

2
‖h‖2Hσ

∫ 1

0
(1− t)dt =

c

4
‖h‖2Hσ ,

where the inequality follows from Eq. (A.5). As a result, for any g ∈ G and µ = c
2 we have that

J (g)− J (fρ,σ) ≥ µ

2
‖g − fρ,σ‖2Hσ ,

yielding the desired result. �

We now turn to examining the behaviour of the risk functional J (g) w.r.t. the underlying probability
measure P. For 0 ≤ ε ≤ 1 and x ∈ Rd, let Pεx = (1− ε)P+ εδx be a perturbation curve, as defined in
Theorem 4.1. The risk functional associated with Pεx is given by

Jε,x(g) = Pεx`g = (1− ε)J (g) + ερ
(
‖Φσ(x)− g‖Hσ

)
,

and f ε,xρ,σ = infg∈G Jε,x(g) is the minimizer. The convergence of f ε,xρ,σ to fρ,σ can be studied by
examining the convergence of Jε,x to J . Specifically, under conditions on J and Jε,x, it can
be shown that

∥∥f ε,xρ,σ − fρ,σ∥∥Hσ → 0 as ε → 0. The machinery we use here uses the notion of
Γ–convergence, which is defined as follows.

Definition A.1 (Γ convergence). Given a functional F : X → R ∪ {±∞} and a sequence of
functionals {Fn}n∈N, Fn

Γ→ F as n→∞ when
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(i) F (x) ≤ lim inf
n→∞

Fn(xn) for all x ∈ X and every {xn}n∈N such that d(xn,x)→ 0;

(ii) For every x ∈ X, there exists {xn}n∈N, d(xn,x)→ 0 such that F (x) ≥ lim sup
n→∞

Fn(xn).

The following result shows that the sequence of functionals {Jε,x} Γ–converges to J .

Proposition A.2 (Γ–convergence of Jε,x to J ). Under assumptions (A1)–(A3),

Jε,x(g)
Γ→ J (g) as ε→ 0.

Proof. Let g ∈ G and {gε}ε>0 be a sequence in G such that ‖gε − g‖Hσ → 0 as ε→ 0. In order to
verify Γ–convergence we first show that the following holds

lim
ε→0

∣∣∣Jε,x(gε)− J (g)
∣∣∣ = 0.

For ε > 0, using the triangle inequality we have that∣∣∣Jε,x(gε)− J (g)
∣∣∣ ≤ ∣∣∣J (gε)− J(g)

∣∣∣+
∣∣∣Jε,x(gε)− J (gε)

∣∣∣
(i)

≤ M ‖gε − g‖Hσ +
∣∣∣Jε,x(gε)− J (gε)

∣∣∣
(ii)

≤ M ‖gε − g‖Hσ + ε ·
∣∣∣J (g)− ρ

(
‖Φσ(x)− g‖Hσ

)∣∣∣,
where (i) uses the fact that J (g) is M–Lipschitz from Proposition A.1, and (ii) uses the fact that

Jε,x(g) = (1− ε)J (g) + ερ
(
‖Φσ(x)− g‖Hσ

)
.

Since ‖gε − g‖Hσ → 0 as ε→ 0 we have

lim
ε→0

∣∣∣Jε,x(gε)− J (g)
∣∣∣ ≤M lim

ε→0
‖gε − g‖Hσ + lim

ε→0
ε ·
∣∣∣J (g)− ρ

(
‖Φσ(x)− g‖Hσ

)∣∣∣ = 0.

Since Jε,x and J are continuous, using (Dal Maso, 2012, Remark 4.8) it follows that Jε,x(g)
Γ→

J (g). �

Now, we examine the coercivity of the sequence {Jε,x}.

Definition A.2 (Equi-coercivity). A sequence of functionals {Fn}n∈N : X→ R∪{±∞} is said to be
equi-coercive if for every t ∈ R, there exists a compact set Kt ⊆ X such that {x ∈ X : Fn ≤ t} ⊆ Kt

for every n ∈ N.

The following result shows that the sequence {Jε,x} is equi-coercive.

Proposition A.3 (Equi-coercivity of Jε,x). Under assumptions (A1)–(A3), the sequence of functionals
{Jε,x} is equi-coercive.

Proof. For 0 < ε < 1, x ∈ Rd and g ∈ G, we have that

Jε,x(g) = (1− ε)J (g) + ερ
(
‖Φσ(x)− g‖Hσ

)
.
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From (Dal Maso, 2012, Proposition 7.7) in order to show that the sequence of functionals {Jε,x}
is equi-coercive, it suffices to show that there exists a lower semicontinuous, coercive functional
F : Hσ → R ∪ {±∞} such that F ≤ Jε,x for every ε ≥ 0. To this end consider the functional

F (g) = min
{
J (g), ρ

(
‖Φσ(x)− g‖Hσ

)}
.

As Jε,x is a convex combination of J (·) and ρ
(
‖Φσ(x)− ·‖Hσ

)
, it implies that F ≤ Jε,x for every

ε ≥ 0. Additionally, because J (·) and ρ
(
‖Φσ(x)− ·‖Hσ

)
are both continuous, it follows that F is

also continuous, and, therefore, lower semicontinuous.

We now verify that F is coercive. Since ρ is strictly increasing we have that

ρ
(
‖Φσ(x)− g‖Hσ

)
→∞ as ‖g‖Hσ →∞,

verifying that ρ
(
‖Φσ(x)− ·‖Hσ

)
is coercive. Next, from the reverse triangle inequality we have that

‖Φσ(x)− g‖Hσ ≥
∣∣∣‖Φσ(x)‖Hσ − ‖g‖Hσ

∣∣∣ =
∣∣∣√Kσ(x,x)− ‖g‖Hσ

∣∣∣.
Observe that Kσ(x,x) = ‖Kσ‖∞, and because ρ is strictly increasing we have

ρ

(∣∣∣‖Kσ‖
1
2∞ − ‖g‖Hσ

∣∣∣) ≤ ρ (‖Φσ(x)− g‖Hσ
)
.

Taking expectations on both sides w.r.t. P,

ρ

(∣∣∣‖Kσ‖
1
2∞ − ‖g‖Hσ

∣∣∣) ≤ ∫
Rd
ρ
(
‖Φσ(x)− g‖Hσ

)
dP(x) = J (g).

Since

ρ

(∣∣∣‖Kσ‖
1
2∞ − ‖g‖Hσ

∣∣∣)→∞ as ‖g‖Hσ →∞,

it implies that J (g) is coercive as well. It follows from this that F is coercive, and the sequence of
functionals {Jε,x} is equi-coercive. �

Propositions A.2 and A.3 together imply, from the fundamental theorem of Γ-convergence (Braides,
2002), that the sequence of minimizers associated with {Jε,x} converge to the minimizer of J , i.e.,∥∥f ε,xρ,σ − fρ,σ∥∥Hσ → 0 as ε→ 0.

A.2 Some Additional Results

Next, we note an important property of the hypothesis class, G = Hσ ∩Dσ. The elements of G can
be shown to have their ‖·‖∞–norm related their ‖·‖Hσ–norm.

Lemma A.1 (Vandermeulen and Scott, 2013, Lemma 6 and Sriperumbudur, 2016, Proposition 5.1).
For every g ∈ Hσ ∩Dσ,

‖g‖2Hσ ≤ ‖g‖∞ ≤ ‖Kσ‖
1
2∞ ‖g‖Hσ .
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The following result, which is essentially the population analogue of Vandermeulen and Scott (2013,
Lemma 7), guarantees that for small enough σ > 0, there exists 0 < δ < 1 such that fρ,σ is contained
in the RKHS ball BHσ(0, δνσ), where for brevity we denote νσ = ‖Kσ‖1/2∞ . We provide the proof for
completeness, however, the proof uses exactly the same ideas from Vandermeulen and Scott (2013).
For notational convenience, we also define ψσ(‖x− y‖2) = Kσ(x,y) = σ−dψ (‖x− y‖2 /σ).

Lemma A.2. Let P ∈M(Rd) and fρ,σ be the robust KDE for σ > 0. For sufficiently small σ > 0,
there exists 0 < δ < 1 such that fρ,σ ∈ B(0, δνσ).

Proof. For P ∈M(Rd), and G = Hσ ∩Dσ, consider the map Tσ : G → G given by

Tσ(g) =

∫
Rd

ϕ
(
‖Φσ(x)− g‖Hσ

)∫
Rd ϕ

(
‖Φσ(y)− g‖Hσ

)
dP(y)

Kσ(·,x) dP(x) =

∫
Rd
Kσ(·,x)wσ(x)dP(x),

for each g ∈ G. Observe that wσ ∈ L1(P) is a non-negative function such that∫
Rd
wσ(x)dP(x) = 1. (A.6)

Let Sσ = Im(Tσ) ⊂ G. It follows from Vandermeulen and Scott (2013, Page 11) that the robust
KDE, fρ,σ = arg infg∈G J (g), is the fixed point of the map Tσ and therefore fρ,σ ∈ Sσ. For a
small ε > 0, from Vandermeulen and Scott (2013, Lemma 12; Corollary 13) there exist r, s > 0
such that P(B(x, r)) ≤ ε and P(B(x, r + s) \ B(x, r)) ≤ ε for all x ∈ Rd. This implies that
P(B(x, r + s)c) > 1− 2ε. We point out that the constant ε chosen here is related to

√
9/10 used by

Vandermeulen and Scott (2013) as
√

1− ε =
√

9/10, which, as remarked by the authors, was chosen
simply for convenience. Define the sets Bσ = BHσ(0, νσ

√
1− ε), and let

Rσ =· Sσ ∩Bc
σ.

In what follows we will show that fρ,σ does not lie in Rσ. To this end, let g = arg infh∈Rσ J (h). It
suffices to show that J (g) > J (0) > J (fρ,σ). Since g ∈ Rσ, it must follow that

(1− ε)ν2
σ < ‖g‖

2
Hσ
≤ ‖g‖∞ = g(z), (A.7)

for some z ∈ Rd, where the second inequality follows from Lemma A.1. Since g ∈ Sσ, there exists a
non-negative function wσ satisfying Eq. (A.6), such that g =

∫
Rd wσ(x)Kσ(·,x)dP(x). Therefore,

(1− ε)ν2
σ ≤ g(z) =

∫
Rd
Kσ(z,x)wσ(x)dP(x)

=

∫
B(z,r)

Kσ(z,x)wσ(x)dP(x) +

∫
B(z,r)c

Kσ(z,x)wσ(x)dP(x)

(i)

≤ ν2
σ

∫
B(z,r)

wσ(x)dP(x) + ψσ(r)

∫
B(z,r)c

wσ(x)dP(x)︸ ︷︷ ︸
≤1

(ii)

≤ ν2
σ

∫
B(z,r)

wσ(x)dP(x) + ψσ(r), (A.8)
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where (i) follows from the fact that supB(z,r)c Kσ(z,x) = ψσ(r) and (ii) follows from Eq. (A.6).
From Vandermeulen and Scott (2013, Lemma 7), there exists σ small enough such that ψσ(r) < ε

2ν
2
σ.

Plugging this back in Eq. (A.8) we get∫
B(z,r)

wσ(x)dP(x) ≥
(

1− 3ε

2

)
. (A.9)

Additionally,

sup
y∈B(z,r+s)c

g(y) = sup
y∈B(z,r+s)c

( ∫
B(z,r)

Kσ(y,x)wσ(x)dP(x) +

∫
B(z,r)c

Kσ(y,x)wσ(x)dP(x)
)

≤ sup
y∈B(z,r+s)c

sup
x∈B(z,r)

Kσ(y,x)

∫
B(z,r)

wσ(x)dP(x)

+ sup
y∈B(z,r+s)c

sup
x∈B(z,r)

Kσ(y,x)

∫
B(z,r)c

wσ(x)dP(x)

sup
y∈B(z,r+s)c

g(y) ≤ ψσ(s) + ν2
σ

∫
B(z,r)c

wσ(x)dP(x).

For a choice of τ > 0, there is σ small enough satisfying ψσ(s) ≤ τ such that from Eq. (A.9)

sup
y∈B(z,r+s)c

g(y) ≤ τ +
3ε

2
ν2
σ. (A.10)

Then we have that

J (g) =

∫
Rd

ρ
(
‖Φσ(x)− g‖Hσ

)
dP(x)

=

∫
B(z,r+s)

ρ
(
‖Φσ(x)− g‖Hσ

)
dP(x) +

∫
B(z,r+s)c

ρ
(
‖Φσ(x)− g‖Hσ

)
dP(x)

≥
∫

B(z,r+s)c

ρ
(
‖Φσ(x)− g‖Hσ

)
dP(x)

=

∫
B(z,r+s)c

ρ

(√
ν2
σ + ‖g‖2Hσ − 2〈g,Φσ(x)〉Hσ

)
dP(x)

≥
∫

B(z,r+s)c

ρ

(√
ν2
σ + ‖g‖2Hσ − 2 sup

y∈B(z,r+s)c
g(y)

)
dP(x).

Plugging in Equations (A.10) and (A.7) we get

J (g) ≥ (1− 2ε)ρ
(√

(2− 4ε)ν2
σ − 2τ

)
.
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Since ρ is assumed to be strictly convex, this implies that ρ′ is strictly increasing. Additionally, from
(A2) we have that ρ′ is bounded. This implies that, for any 0 < α < ‖ρ′‖∞, there is β > 0 such that
ρ′(z) > ‖ρ′‖∞ − α for all z > β. Using Vandermeulen and Scott (2013, Eq. 11), we have

ρ
(√

(2− 4ε)ν2
σ − 2τ

)
=

∫ (2−4ε)ν2σ−2τ

0
ρ′(z)dz

≥
∫ (2−4ε)ν2σ−2τ

β
ρ′(z)dz

≥
∫ (2−4ε)ν2σ−2τ

β

(∥∥ρ′∥∥∞ − α) dz
≥
(∥∥ρ′∥∥∞ − α) (√(2− 4ε)ν2

σ − 2τ − β
)
.

Without loss of generality, we can assume ‖ρ′‖∞ = 1. Choosing α, τ and σ small enough we obtain

J (g) ≥ νσ.

Now we note that

J (0) =

∫
Rd
ρ
(
‖Φσ(x)‖Hσ

)
dP(x)

= ρ (νσ)

= ρ(0) +

∫ νσ

0
ρ′(z)dz

≤ ρ(0) +
∥∥ρ′∥∥∞ ∫ νσ

0
dz = νσ.

Thus, we obtain that J (g) > J (0). We have g = arg infh∈Rσ J (h) and fρ,σ = arg infh∈G J (h), and,
additionally we know that fρ,σ 6= 0. It follows that since J (fρ,σ) ≤ J (0) < J (g), then fρ,σ /∈ Rσ as
σ → 0. Taking δ =

√
1− ε, we get the desired result. �

B Background on Persistent Homology

Given a set of a points Xn = {x1 . . .xn} in a metric space (X, d) their topology is encoded in a
geometric object called a simplicial complex K ⊆ 2Xn .

Definition B.1. (Hatcher, 2002). A simplicial complex K is a collection of simplices 〈σ〉 i.e. points,
lines, triangles, tetrahedra and its higher dimensional analogues, such that

1. ∀τ 4 σ, σ ∈ K we have τ ∈ K;

2. ∀σ, τ ∈ K, we have that σ ∩ τ 4 σ, τ or σ ∩ τ = φ.

For a given spatial resolution r > 0, the simplicial complex for Xn, given by K (Xn, r), can be
constructed in multiple ways. For example, the Vietoris-Rips complex is the simplicial complex

Kr = {σ ⊆ Xn :
⋂
x∈σ

B(x, r) 6= ∅},
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and the Čech complex is given by

Kr = {σ ⊆ Xn : max
xi,xj∈σ

d (xi,xj) ≤ r}.

More generally, if K is a simplicial complex constructed using an approximation of the space X

(e.g., triangulation, surface mesh, grid, etc.), and φ : X → R a filter function, φ induces the map
φ : K → R. Then, Kr = φ−1 ([0, r]) encodes the information in the sublevel set of φ at resolution r.
Similarly, Kr encodes the information in the superlevel sets at resolution r.

For 0 ≤ k ≤ d, the kth-homology (Hatcher, 2002) of a simplicial complex K, given by Hk (K) is
an algebraic object encoding its topology as a vector-space (over a fixed field). Using the Nerve
lemma, Hk (K (Xn, r)) is isomorphic to the homology of its union of r-balls, Hk (

⋃n
i=1Br (xi)). The

ordered sequence {K (Xn, r)}r>0 forms a filtration, encoding the evolution of topological features
over a spectrum of resolutions. For 0 < r < s, the simplicial complex K (Xn, r) is a sub-simplicial
complex of K (Xn, s). Their homology groups are associated with the inclusion maps

ιsr : Hk (K (Xn, r)) ↪→ Hk (K (Xn, s)) ,

which in turn carry information on the number of non-trivial k-cycles. As the resolution r varies,
the evolution of the topology is captured in the filtration. Roughly speaking, new cycles (e.g.,
connected components, loops, voids and higher order analogues) can appear or existing cycles can
merge. Formally, a new k-cycle σk with homology class [αk] is born at b ∈ R if [αk] /∈ Im(ιkb−ε,b)

for all ε > 0 and [αk] ∈ Im(ιkb,b+δ) for some δ > 0. The same k-cycle born at b dies at d > b if
ιkb,d−δ ([αk]) /∈ Im(ιkb−ε,d−δ) and ιkb,d ([αk]) ∈ Im(ιkb−ε,d) for all ε > 0 and 0 < δ < d − b. Persistent
homology, PH∗(φ), is an algebraic module which tracks the persistence pairs (b, d) of births b and
deaths d across the entire filtration. By collecting all persistence pairs (b, d), the persistent homology
is represented as a persistence diagram

Dgm (K (Xn)) =·
{

(b, d) ∈ R2 : 0 ≤ b < d ≤ ∞
}
.

The persistence diagram is a multiset of points on the space Ω = {(x, y) : 0 ≤ x < y ≤ ∞}, such
that each point (x, y) in the persistence diagram corresponds to a distinct topological feature which
existed in K(Xn, r) for x ≤ r < y. Given a persistence diagram D and 1 ≤ p ≤ ∞ the degree-p total
persistence of D is given by

persp(D) =

 ∑
(b,d)∈D

|d− b|p
 1

p

.

The space of persistence diagrams, given by Dp =
{
D : persp(D) <∞

}
, is endowed with the family

of p-Wasserstein metrics Wp. Given two persistence diagrams D1,D2 ∈ Dp, the p-Wasserstein
distance is given by

Wp (D1,D2) =·
 inf
γ∈Γ

∑
z∈D1∪∆

‖z − γ(z)‖p∞

 1
p

, (B.1)

where Γ = {γ : D1 ∪∆→ D2 ∪∆} is the set of all bijections from D1 to D2 including the diagonal
∆ =

{
(x, y) ∈ R2 : 0 ≤ x = y ≤ ∞

}
with infinite multiplicity.
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(c) Birth at level r ≈ 8
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(d) Death at level r ≈ 7
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(e) Death at level r ≈ 5
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(f) Component persists until r=0

Figure 9: An example for the superlevel filtration of φ : R→ R. (a) As the superlevel set enters r ≈ 15, the
first connected component is born, corresponding to the blue dot on the highest peak of φ. The superlevel set
for r = 15 is depicted in pink below. This is recorded as a birth in the corresponding orange dot enclosed in
the pink shaded region of the persistence diagram. (b) As the r enters r ≈ 12, another connected component
is born. This is recorded as the second orange dot in the shaded region of the persistence diagram. (c) Again,
at r ≈ 8, a third connected component is born at the lowest peak of φ. The three connected components
in the superlevel set are shaded in pink below the function. The persistence diagram has three orange dots
corresponding to these three connected components. (d) As r enters the first valley of φ, depicted by the red
dot, two connected components merge (i.e., one of the existing connected components die). By convention,
the most recent persistent feature is merged into the older one, i.e., the connected component from (c) merges
into the one from (b), and thus, it dies at this resolution. In the persistence diagram, this is noted by the
fact that the orange dot born in (c) dies at resolution r ≈ 7. At this stage, there are only two orange dots in
the pink shaded region of the persistence diagram, corresponding to the two pink connected components in
the superlevel set of φ. (e) When r enters the second valley of φ, the connected component from (b) merges
into the connected component from (a), and form a single connected component. The orange dot in the
persistence diagram records the death of this feature. (f) The single connected component persists from then
on, and eventually dies at r = 0.
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