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Simulators are Ubiquitous in Science

For many complex physical phenomena, the only meaningful 
model (theory) may be in the form of simulations.
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Simulators are Ubiquitous in Science

Simulators may be good at simulating realistic data — but 
often poorly suited for the inverse problem of inferring the 
underlying scientific mechanisms. High-fidelity simulations 
can also be slow => fit approximate model (emulator)
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Statistical Challenges for Complex Models

4

Forward problem: Does data from the approximate model have 
the same distribution as high-fidelity (simulated or observed) data?


Ask if two distributions are different, and if so, how they differ in 
high dimensions (capture dependencies between all variables)?

Inverse problem: Suppose we have a forward model Fθ that 
implicitly encodes the relationship between parameter θ of 
interest (input) and high-dimensional observable data X (output).  


Given observed data D={X1,.. Xn}, can we infer the true 
parameters θ with valid measures of uncertainty (confidence sets)? 
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Ex 1: Comparing Distributions in High Dimensions.

How are the Morphologies of the Galaxy Populations Different?
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Can we answer the question if, and if so, how two 
populations are different without just looking at histogram of 
a few individual features?

[Figure credit: Dalmasso et al, 2019]
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ADA Project: Simulations v. Reality

4 G.F. Snyder et al.

Figure 1. Example g-r-i images of z = 0 Illustris galaxies at
each of three stages of our image realism procedure, arranged
by increasing stellar mass from bottom (M⇤ ⇠ 1010M�) to top
(M⇤ ⇠ 1012M�) and selected based on their location in the G-
M20 plane (as in Section 3.3). For displaying, we pretend the
galaxy was observed in SDSS at z = 0.05 with a pixel size of
0.5 arcsec. Left: Ideal output image directly from Sunrise. Mid-
dle: We convolved the ideal image for each filter by a Gaussian
PSF with FWHM= 2.0 arcsec. Right: To the PSF-convolved im-
ages, we add random cutouts from SDSS DR10 (Ahn et al. 2014),
downloaded from data.sdss3.org/mosaics. The remainder of this
paper analyzes measurements of synthetic images that are most
like those in the middle column, as described in Section 2.2.

AB absolute zero-points, original camera distances and pixel
scales, and the new implied apparent magnitude at the cam-
era distance. We store these important metadata in the im-
age headers. Thus the conversion from the Sunrise output
can be uniquely specified, and synthetic image fluxes can be
recomputed for any assumed distance. From these FITS files,
we then create files containing colour-composite images.

Finally, we add sky shot noise such that the average
signal-to-noise ratio of each galaxy pixel is 25. We assume
this sky shot noise is a Gaussian random process indepen-

dently applied to each pixel. Thus we are assuming that each
model galaxy is strongly detected, eliminating biases from
potentially noisy morphology measurements.

For future visual classification projects, we also prepare
images for classification by the Galaxy Zoo project (GZ,
e.g., Lintott et al. 2008) in SDSS g, r, and i filters. Us-
ing our initial radius (rP ) measurements as defined in Sec-
tion 2.3, we re-bin our SDSS-like FITS images to a new pixel
scale (0.008⇥ rp) and create images with a fixed pixel count
(424⇥424). These choices are such that the galaxy extent de-
fined by 2rp always subtends ⇠ 2/3 of the linear image size,
enabling fair visual classifications as a complement to our
fixed-scale non-parametric measurements below. For such
visual classification projects, we also add real SDSS back-
ground images to create fully synthetic ugriz galaxy images.
To accomplish this, we first downloaded mosaics from the
SDSS DR10 (Ahn et al. 2014) Science Archive Server with
the mosaic web tool (data.sdss3.org/mosaics). From these,
we randomly select a region of an appropriate size for each
synthetic image, assuming the galaxies are at z = 0.05, and
add it to the simulated galaxy image. We demonstrate these
steps in Figure 1. This is a simplification from complete
image simulations of self-consistent lightcones drawn from
the simulation volume (e.g., Overzier et al. 2013; Henriques
et al. 2012). We have created several examples of these sim-
ulated fields from Illustris, and such techniques (Kitzbichler
& White 2007) will become very useful as the volumes of
such simulations grow.

2.3 Structural Measurements

We measure non-parametric morphologies by using code
originally developed for idealized merger simulations (Lotz
et al. 2008a, 2010a,b) and also applied to galaxy surveys
(Lotz et al. 2004, 2008b, 2011). From each image, we charac-
terize the light profile with a Petrosian radius rP , half-light
radius R1/2, Concentration (C), Gini (G), and M20 (Con-
selice et al. 2003; Lotz et al. 2004), defined below. Our code
also measures merger and disturbance indicators, Asymme-
try and the newly proposed MID merger statistics (Freeman
et al. 2013), but in this paper we focus on the above simple
estimates of galaxy structure. We will return to diagnostics
of mergers and disturbances in a future paper.

We define the Petrosian radius or semi-major axis rp

such that the mean surface brightness in an elliptical annulus
with semi-major axis rp equals 0.2 times the mean surface
brightness within this ellipse, following Lotz et al. (2004).
Here we also compute an elliptical half-light radius R1/2 to
characterize galaxy sizes, assuming that all of the galaxy’s
light is contained within an ellipse with semi-major axis 1.5⇥
rp.

We compute the concentration parameter C (Bershady
et al. 2000):

C = 5 log
10

r80

r20
, (1)

where r80 and r20 are circular apertures containing 80% and
20% of the total flux within the ellipse with semi-major axis
1.5rp (Conselice et al. 2003) of the galaxy center defined
by minimizing the Asymmetry parameter (Abraham et al.
1996).

Gini’s coe�cient, G, measures the inequality in flux
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Simulated Galaxy Morphologies at z = 0 5

Figure 2. Gini–M20 as a function of star formation as reflected by U � B colour for galaxies at z ⇠ 0.3. Left: data from the Extended
Groth Strip (EGS) survey compiled by Lotz et al. (2008b): roughly rest-frame B-band. Right: mock data from T15 at z = 0.33: rest-
frame r-band. Here we show simulated galaxies at z = 0.33 to roughly match the volume-limited EGS sample, but all other figures show
simulated galaxies at z = 0 only. Red (blue) contours encircle 68% and 95% of the galaxies with U � B > 1 (U � B < 1). We find that
simulated galaxies of a given colour have roughly the right optical shape, and Illustris produces a large population of early-type objects.

value among a galaxy’s pixels, varying from 0 (all pixels
equal flux) to 1 (one pixel contains all flux). First used by
Abraham et al. (2003) to characterize galaxy light profiles,
G correlates with C but does not depend on the location of
the brightest pixels. Hence it is sensitive not only to concen-
trated spheroids but also to galaxies with multiple bright
regions. For a discrete population, Glasser (1962) showed
that G can be computed as:

G =
1

¯|Ii|n (n� 1)

nX

i

(2i� n� 1) |Ii|, (2)

where we have n pixels with rank-ordered absolute flux val-
ues |Ii|, and ¯|Ii| =

P
i |Ii| /n, the mean absolute flux value.

We follow Lotz et al. (2004) in correcting G using abso-
lute values to mitigate the e↵ect of noise-induced negative
fluxes. This procedure recovers the true G when S/N & 3
per galaxy pixel, which is true by construction for all of the
galaxy images we prepared in Section 2.2.

M20 measures the second-order spatial moment of a
galaxy’s bright pixels contributing 20% of the total light,
relative to its total moment (Lotz et al. 2004):

M20 ⌘ log
10

P
i Mi

Mtot

, for
X

i

Ii < 0.2Itot, (3)

where

Mtot =
nX

i

Mi =
nX

i

Ii

⇥
(xi � xc)

2 + (yi � yc)
2
⇤
, (4)

and xc, yc are the 2-D spatial coordinates of the galaxy cen-
ter, defined to minimize Mtot. For computing G and M20,
we define a galaxy’s pixels following the segmentation pro-
cedure by Lotz et al. (2004).

In Figures 2 and 3, we divide the G-M20 plane into
three regions corresponding to early types, late types, and

mergers, based on comparisons with low-redshift visual clas-
sifications (Lotz et al. 2004). These classifications are meant
to be loose guidelines and are not to be strictly inter-
preted. For future reference, we define aG-M20 “bulge statis-
tic”, which depends on an object’s location in this diagram
and correlates with optical bulge strength. This will serve
as a rough automated assessment of morphological type.
Specifically, we define F as five times the point-line dis-
tance from a galaxy’s morphology point to the line pass-
ing through (G0,M20,0) = (0.533,�1.75) and parallel to the
Lotz et al. (2004) early-type/late-type separation line, which
has a slope m = 0.14 in the space of (G,M20). We chose the
scaling factor 5 so that the resulting values occupy a con-
venient range (�2 . F . 1). Starting from the point-line
distance formula in two dimensions:

d =
|aM20 + bG+ c|
(a2 + b2)1/2

, (5)

where d is the distance from a point to the line G =
�(a/b)M20 � (c/b). We let b = 1 and set a =
�m = �0.14, allowing us to solve for c = �b(G0 +
aM20,0) = �0.778, which defines the desired line. We set
the sign of F so that positive (negative) values indicate
bulge-dominated (disc-dominated) galaxies. Thus, |F | =
|�0.693M20 + 4.95G� 3.85|, and

F (G,M20) =

(
|F | G > 0.14M20 + 0.778

� |F | G < 0.14M20 + 0.778
(6)

corresponding to the “G-M20 bulge statistic” annotation to
Figure 3 and shown in panel (d) of Figure 4. For most galax-
ies, this diagnostic adds little new information beyond M20

(or C or Sérsic index). However, F is less sensitive to dust,
mergers, and other disturbances that move galaxies in a
roughly perpendicular direction away from the main G-M20

locus. F traces quenched galaxies similarly well, if not a lit-
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Problem Statement

Suppose we have two sets of data of size m and n sampled from distributions F and G:
{x

F
1 , x

F
2 , · · · , x

F
m} ≥ F and {x

G
1 , x

G
2 , · · · , x

G
n } ≥ G .

x
F
i could be a set of summary statistics for the i

th galaxy of a catalog constructed from,
e.g., a simulated H-band catalog, while x

G
j could be those same statistics extracted from

j
th galaxy image in an HST WFC3 H-band catalog. The number of statistics, and thus the

dimensionality of our sample space, is d π p, and the density functions associated with the
distributions F and G are f(x) and g(x), respectively.

With regard to our first statistical aim, we wish to identify regions in the sample space
where the distributions F and G are significantly di�erent and to use this information,
e.g., to infer redshift evolution (given two observed samples) or to inform improvements in
simulation codes (by comparing simulation output at one wavelength to HST data at that
same wavelength), etc.

With regard to our second statistical aim, suppose that x ≥ F represents the summary
statistics for a population of simulated galaxies, while y represents the stellar masses, star-
formation rates, etc., for those same galaxies. Given {(x1, y1), . . . , (xn, yn)} for a set of n

galaxies, we wish to learn the relationship between x and y; for example, we may want to
estimate the conditional density

f(y|x) = f(Mı,SFR, . . . | C,A,G,M20,M,I,D) ,

for the whole population of simulated galaxies, where the symbol | indicates that the quan-
tities to the right are fixed.Observing Galaxy Assembly in Simulations

!
!
!
!
!
!
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Hδ absorption [O II] emission D4000

Figure 4: Maps derived using radiative transfer 
from a hydro simulation. This shows how stars 
and star formation are distributed after a major 
merger. Spatially resolved spectra, including 
ionization, doppler shifting, and dust, can now 
be created from suites of cosmological 
simulations and studied alongside IFU surveys 
to constrain dynamical histories of galaxies.

first passage final merger

Figure 3: Mock image analysis of a merger in a high-resolution simulation (Snyder et al. 2014). 
Diagnostics have varying sensitivity: multiple nuclei indicated by G-M20 for a long period 
during first passage; lopsidedness (D statistic) more strongly peaked at 4.5 Gyr. Bottom panel 
shows rate of change in mass via star formation, gas flows, and mergers (“ex-situ stars”). These 
quantities are elevated during first passage and final merger. The goal is to use synthetic data to 
translate between this physical mass assembly and measurements from surveys (upper panels). 
Both large volumes and high space and time resolution are essential to accumulate robust 
statistics on these rare, subtle, and heterogeneous signposts of galaxy formation.  

Merger 
seen from 
3 angles!!
Images as 
in HST- 
CANDELS

Figure 2. A merger observed in a high-resolution simulation (Snyder et al. 2014). Multiple nuclei are
indicated by heightened values of G and M20 over a long period during first passage, while lopsidedness
is indicated by D, which strongly peaks at 4.5 Gyr. The bottommost panel shows rate of change in
mass via star formation, gas flows, and mergers (“ex-situ stars”), quantities that are elevated during
the first passage and final merger. One goal of our work would be to learn the relationship between
physical mass assembly and observed summary statistics like G, M20, and D.

4
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Goal: Simulate weak lensing data to constrain parameters of the 
Lambda CDM model in “Big Bang” cosmology

[Image credit: Lin & Kilbinger, 2018]

Ex 2: Comparing Distributions in High Dimensions.

Calibrate Forward Model with Internal Parameters



Statistical Methods for Comparing 
Distributions of High-Dimensional Data

https://arxiv.org/abs/1905.11505 (AISTATS 2020) 

https://arxiv.org/abs/2010.04051 (NeurIPS Workshop 2020) 

https://arxiv.org/abs/1905.11505
https://arxiv.org/abs/2010.04051


Statistical Setting: Two-Sample Test

10

•



Comparing Distributions:

Traditional Approaches Focus on Univariate Tests

11



1. We are looking for regions in the sample space where 
the two populations have significantly different densities

12 [Figure credit: Ilmun Kim 2016]



2. We are searching for differences in high-
dimensional space (e.g., each data point could 
represent an image or a sequence of images)

13 [Figure credit: Ilmun Kim 2016]
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Two-Sample Test via Regression 

[Kim, Lee and Lei 2019]
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Two-Sample Test via Regression 

[Kim, Lee and Lei 2019]
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Why Two-Sample Test via Regression?

16

Can adapt to any structure in X for which there is a suitable 
regression technique.


The power of the test is directly related to the the MISE of the 
chosen regression estimator [Kim et al, 2019]


The regression test tells you not only if but also how the two 
samples are different in space of observables



If the chosen regression estimator has a small 
MISE, the power of the test is large over a 
wide region of the alternative hypothesis

17
[Ref: Kim, Lee, & Lei;


EJS 2019]



Why Two-Sample Test via Regression?

18

Can adapt to any structure in X for which there is a suitable 
regression technique


The power of the test is directly related to the the MISE of the 
chosen regression estimator [Kim et al, 2019]


The regression test tells you not only if, but also how, the two 
samples are different in space of observables



Let’s return to the galaxy morphology example…

Divide 2736 galaxies from the CANDELS program into two 
populations based on SFR: “Low SFR” vs “High SFR” sample


Consider seven morphology summary statistics jointly 


Are the morphologies the same or not (compared to chance)?

19



Regression Test to Identify If and How Two 
Distributions Differ in 7-Dim Feature Space

20



21

Our framework can help answer:


IF one needs to improve the emulator model 


WHERE in parameter space ϴ the fit might be poor


HOW the distributions of emulated and high-fidelity simulated data 
may differ in observable space χ

We can use a similar approach to compare 
forward models with internal parameters



Two-Step Procedure: Local Test at Each Parameter.

Global Test of Uniformity of Local P-Values.

22

For the local test, our regression test 
allows us to accommodate any data type 
with interpretable diagnostics.


Global test is consistent against all 
alternatives if the local test is consistent.



Back to Example: Simulate Weak Lensing Data 
to Constrain Cosmological Parameters

23

Use CAMELUS [Lin & Kilbinger 
2015] to simulate weak lensing 
convergence maps                       
⇒ binned peak counts x ∈ ℕ7


Batch of 200 train + 200 test 
simulations at 50 different 
cosmologies/parameter settings.


Fit 3 different likelihood models: 
Gaussian, Poisson, MAF



Do we need more simulations to fit the data 
well or are the current fits good enough?

24

Based on the KL loss we would choose the Gaussian likelihood 
model — but our local test p-values reveal that the Gaussian 
model is rejected at all parameter values.

log(KL) = −8.092
pglobal < 1e−06

log(KL) = −8.095
pglobal < 1e−06

log(KL) = −8.076
pglobal < 1e−06

log(KL) = −8.079
pglobal < 1e−06

log(KL) = −5.824
pglobal = 0.001

log(KL) = −5.832
pglobal = 0.124

Gaussian Poisson MAF
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Even if it’s not feasible to simulate more data, our 
regression test provides valuable diagnostics…

25

Local Test – Test Statistic
Given a regression method ‚m, empirical proportion ‚fi1 = 1

n

qn
i=1 I(Yi = 1):

‚T = 1
n

nÿ

i=1
( ‚m(Xi) ≠ ‚fi1)2

we determine p-value by permutation test, so the test is general and
does not rely on asymptotic distributions
we can accommodate any data type X for which a regression method
exists
the di�erence | ‚m(x) ≠ ‚fi1| provides information on how well the
emulator fits the simulator in feature space: we can test whether
| ‚m(x) ≠ ‚fi1| is statistically significantly higher!

Theorem
If ‚m achieves a small MISE, then regression test yield high power over a

wide region of the alternative hypothesis.
Nic Dalmasso (Carnegie Mellon University) 8 / 14



Emulator diagnostics: Our regression test tells us 
how the two samples are different in ℕ7

26

Partial dependence 
plot for variable X7. 
The regression test is 
distinguishing 
between the discrete 
true distribution and 
the approximate 
Gaussian continuous 
distribution.

According to our random forest regression, bins with low counts (e.g. 
bin X7) contribute the most to the rejection of the Gaussian model.
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80 90 100
X7

P(
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1|
X) Test ⎪⎪m̂(X) − π1̂⎪⎪
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P(Y=1|X)

P(Y=1)



Statistical Challenges for Complex Models

27

Forward problem: Does data from the approximate model have 
the same distribution as high-fidelity (simulated or observed) data?


Ask if two distributions are different, and if so, how they differ in 
high dimensions (capture dependencies between all variables)?

Inverse problem: Suppose we have a forward model Fθ that 
implicitly encodes the relationship between parameter θ of 
interest (input) and high-dimensional observable data X (output).  


Given observed data D={X1,.. Xn}, can we infer the true 
parameters θ with valid measures of uncertainty (confidence sets)? 



What is Likelihood-Free Inference?

Inference on parameters in the second setting is called 
likelihood-free inference (LFI). 

28

Image credit: Nic Dalmasso



Classical LFI:  Approximate Bayesian 
Computation (ABC)

29 Image credit: Sunnaker et al. 2013



Changing LFI Landscape

30

Posteriors [e.g., Papamakarios et al, 2016; Lueckmann et al, 2016; Izbicki et 
al, 2019; Greenberg et al, 2019]


Likelihoods [e.g., Izbicki et al, 2014; Thomas et al, 2016; Durkan et al, 
2020; Brehmer et al., 2020]


Likelihood ratios [e.g, Cranmer et al, 2015; Thomas et al, 2016; Hermans 
et al, 2020; Durkan et al, 2020; Brehmer et al, 2020]


These new training-based approaches provide amortized 
inference. Can handle complex high-dimensional data 
without relying on summary statistics.

More recent developments use ML algorithms to directly 
estimate key inferential quantities from simulated data



So What’s Missing?

31

Statistical tests and confidence sets are the hallmarks of scientific 
inference but have not received much attention in LFI.


Given observed data D={X1,.. Xn}, can we infer the true 
parameters θ with valid measures of uncertainty for small n? 

Image credit: Rachel Mandelbaum (Cosmo21)



A New Inference Machinery for Frequentist LFI

Bridges ML with classical statistics to provide:


(i) valid inference: confidence sets and hypothesis tests with 
finite-sample guarantees (Type I error control and power)


(ii) practical diagnostics: check actual coverage across 
parameter space


(iii) modular procedures: compatible with any test statistic and 
different types of data

32
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 https://arxiv.org/abs/2002.10399

Preliminary work presented at ICML 2021 by Nic Dalmasso

https://arxiv.org/abs/1911.11089
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Equivalence of Tests and Confidence Sets

Key ingredients:

data D = {X1, ..., Xn}
a test statistic, such as the likelihood ratio statistic LR(D; ◊0)
an –-level critical value C◊0,–

Reject the null hypothesis H0 if LR(D; ◊0) < C◊0,–

Theorem (Neyman 1937)
Constructing a 1 ≠ – confidence set for ◊ is equivalent to testing

H0 : ◊ = ◊0 vs. HA : ◊ ”= ◊0

for every ◊0 in the parameter space.

Ann B. Lee (Carnegie Mellon University) 2 / 21
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1. Fixed ◊. Find the rejection region for test statistic �.

Ann B. Lee (Carnegie Mellon University) 3 / 21
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2. Repeat for every ◊ in parameter space.

Ann B. Lee (Carnegie Mellon University) 4 / 21
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3. Observe data D = D. Calculate �(D; ◊).

Ann B. Lee (Carnegie Mellon University) 5 / 21



38

4. Construct (1 ≠ –) confidence set for ◊.

Ann B. Lee (Carnegie Mellon University) 6 / 21
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How do we turn the construction into practical procedures?
“Wrinkle”: The Neyman construction requires one to test

H0 : ◊ = ◊0 vs. HA : ◊ ”= ◊0

for all ◊0 œ �.

Key Realization: The main inferential quantities like

1 the test statistic ·(D; ◊0),
2 the critical value C◊0,– or the p-value p(D; ◊0) of the test

3 the coverage P[◊0 œ R(D)] of the confidence set

are conditional distribution functions which often vary smoothly as a

function of the (unknown) parameters.

Rather than relying solely on samples at fixed parameter settings (standard

Monte Carlo approach), we can interpolate across the parameter space

with ML algorithms.

Ann B. Lee (Carnegie Mellon University) 7 / 21
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Our Inference Machinery

Ann B. Lee (Carnegie Mellon University) 8 / 21
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Estimate Odds via Probabilistic Classification
Simulate two samples:

{(◊k, Xk, Yk = 1)}B/2
k=1, where ◊ ≥ fi(◊), X ≥ F◊

{(◊l, Xl, Yl = 0)}B/2
l=1 where ◊ ≥ fi(◊), X ≥ G

Probabilistic classifier r:

r : (◊, X) ≠æ P(Y = 1|X, ◊)

Define the odds at ◊ œ � and fixed x œ X as

O(x; ◊) := P(Y = 1|x, ◊)
P(Y = 0|x, ◊) = f◊(x)

g(x)

Interpretation: Chance that x was generated from F◊ rather than G.

Ann B. Lee (Carnegie Mellon University) 10 / 21
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Test Statistic Based on Odds Ratios (ACORE)
Odds Ratio: OR(x; ◊0, ◊1) = O(x;◊0)

O(x;◊1)
Interpretation: Chance that x was generated from ◊0 rather than ◊1.

Suppose we want to test:

H0 : ◊ œ �0 vs H1 : ◊ ”œ �0

We define ACORE test statistic:

‚·(D; �0) := sup
◊0œ�0

inf
◊1œ�

nÿ

i=1
log

1
‰OR(Xobs

i ; ◊0, ◊1)
2

Theorem (Fisher’s Consistency)

If ‚P(Y = 1|◊, x) = P(Y = 1|◊, x) ’◊, x =∆ ‚·(D; �0) = LR(D; ◊0)
Ann B. Lee (Carnegie Mellon University) 11 / 21
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Left Branch: Estimate Critical Values or P-Values

We use B
Õ

simulations to estimate critical values.

Ann B. Lee (Carnegie Mellon University) 12 / 21
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Estimate Critical Values C◊0,–

To control Type I error at level –:

Reject H0 : ◊ = ◊0 when ·(D; ◊0) < C◊0,–, where

C◊0,– = arg sup
CœR

{C : P (·(D; ◊0) < C | ◊ = ◊0) Æ –} .

Problem: Need to estimate P (·(D; ◊) < C | ◊) for every ◊ œ �.

Solution: F· |◊(C|◊) © P(·(D; ◊) < C|◊) is a conditional CDF, so we can

estimate its –-quantile via quantile regression F
≠1
· |◊ (–|◊).

Ann B. Lee (Carnegie Mellon University) 13 / 21
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Construct Confidence Set via Neyman Inversion

Ann B. Lee (Carnegie Mellon University) 14 / 21
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Right Branch: Checking Actual Coverage Across �
How do we check coverage P (◊ œ R(D)) as a function of ◊ œ �?

Note: P (◊ œ R(D)|◊) = E[I(◊ œ R(D))|◊]
That is, we can estimate empirical coverage across the entire parameter

space by regression (probabilistic classification):

1 Sample ◊i and data Di ≥ F◊i

2 Construct confidence set R(Di)

3 For {◊i, R(Di)}B
ÕÕ

i=1, regress

Zi = I(◊i œ R(Di)) on ◊i

How close is the actual coverage to the nominal confidence level 1 ≠ –?

Ann B. Lee (Carnegie Mellon University) 17 / 21
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How do we implement our LFI machinery in practice?

Ann B. Lee (Carnegie Mellon University) 18 / 21
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A Practical Strategy

(A) Use the cross-entropy on a held-out set to select probabilistic classifier

and sample size B for learning the odds

Ann B. Lee (Carnegie Mellon University) 19 / 21
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A Practical Strategy

(B) Compute the optimization step in ACORE with available computational

budget.

Ann B. Lee (Carnegie Mellon University) 20 / 21
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A Practical Strategy

(C) Use our diagnostic tool to determine the quantile regression algorithm

and sample size B
Õ

to achieve nominal coverage across �.

Ann B. Lee (Carnegie Mellon University) 21 / 21



Toy Example: Signal Detection in High Energy Physics

Particle collision events counted under the presence of a 
background process.

51

The observed data D consist of n=10 realizations of 
X=(N,M), where 


N is the number of events in the signal region,


M is the number of events in the background/control region


Unknown parameters: 


intensity of signal (𝛎); intensity of background (b)



Constructed Confidence Set for a Particular Xobs


Our proposed strategy selects the BLUE confidence region

52
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Constructed Confidence Set for a Particular Xobs

Our proposed strategy selects the BLUE confidence region
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Diagnostics: Do We Achieve Nominal Coverage 
(Type I Error Control) Across the Parameter Space?
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Take Away: Forward Problems - Validation

55

We can leverage regression methods (probabilistic 
classifiers) to identify IF and HOW two samples differ.



Take-Away: Inverse Problem - Calibration

56

We can construct confidence sets with nominal coverage, 
and provide diagnostics, even without a tractable likelihood.



EXTRA SLIDES START 
HERE

57



Results from Joint Analysis in 7 Dimensions: 

Galaxies with significantly higher representation in low-SFR 

sample (top) vs in high-SFR sample (bottom)
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Quality Assurance of Simulation Models
by High-Dimensional Ensemble Consistency Testing (HECT)

59

[Dalmasso, Vincent, Hammerling and Lee 2020]
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How Does Our Approach Scale?

Consider an example where the forward model is just a MVG distribution

N(◊, Id). Construct a confidence set for the unknown mean ◊ œ R
d
.

Suppose the observed data are X1, . . . , X10 ≥ N(0, Id), so n = 10
and ◊ = 0 (unknown parameter).

We first assume that the likelihood can be evaluated, but that we do

not know the distribution of the test statistic under the null.

Compare our results to exact LRT and exact BF (baseline).

Compare our results to Crossfit LRS — a “universal inference”
1

method for constructing valid finite-sample confidence sets in such

settings without regularity conditions by averaging the LR over two

data splits.

1Wasserman, Ramdas, and Balakrishnan; PNAS 2020
Ann B. Lee (Carnegie Mellon University) 3 / 16



Known Likelihood Setting in 2D: Examples of 
Constructed Confidence Sets (All Valid)

When d=2, our method “known LR” (GREEN) returns confidence 
sets that are similar to “exact LR” (BLUE), but smaller than the 
more conservative universal inference approach with “crossfit LR” 
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Coverage and Power for Known Likelihood

Our approach for estimating critical values yields the same power as the 
exact tests even in high dimensions, with a modest sample size of B’=5000.
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LFI Setting in 2D: Examples of Constructed 
Confidence Sets (All Valid)

When d=2, ACORE and BFF confidence sets (for B=B’=5000) are 
comparable with the exact LR confidence sets.
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Coverage and Power in an LFI Setting

In higher dimensions, ACORE and BFF confidence sets are still valid but lose 
some power with respect to their exact counterparts.
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