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Simulators are Ubiquitous in Science

SIMULATORS Image credit: Kyle Cranmer
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@ For many complex physical phenomena, the only meaningful
model (theory) may be in the form of simulations.
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@ Simulators may be good at simulating realistic data — but

often poorly suited for the inverse problem of inferring the
underlying scientific mechanisms. High-tfidelity simulations
can also be slow => fit approximate model (emulator)
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Statistical Challenges for Complex Models

@ Forward problem: Does data from the approximate model have
the same distribution as high-fidelity (simulated or observed) data?

@ Ask if two distributions are different, and if so, how they differ in
high dimensions (capture dependencies between all variables)?

Xi,....Xm~F and X* ... X*~ F*

@ Inverse problem: Suppose we have a forward model Fg that
implicitly encodes the relationship between parameter 8 of
interest (input) and high-dimensional observable data X (output).

@ Given observed data D={X;,.. X,}, can we infer the true
parameters 6 with valid measures of uncertainty (confidence sets)?

P e RD)|>1—-«

4



Statistical Challenges for Complex Models
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6Forward oroblem: Does data from the approximate model| havh
the same distribution as high-fidelity (simulated or observed) data?

@ Ask if two distributions are different, and if so, how they differ in
high dimensions (capture dependencies between all variables)?
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Inverse problem: Suppose we have a forward model Fg that
implicitly encodes the relationship between parameter 8 of
interest (input) and high-dimensional observable data X (output).

@ Given observed data D={X;,.. X,}, can we infer the true
parameters 6 with valid measures of uncertainty (confidence sets)?
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Ex 1: Comparing Distributions in
How are the Morphologies of the Galaxy

High

Dimensions.

Populations Difterent?

Figure 7: Examples of galaxies from (a) the low-SFR sample &, versus (b) the high-SFR sample &;.
o o o

@ Can we answer the question if, and it so, how two

populations are different without just looking at histogram of

a few individual features?

[Figure credit: Dalmasso et al, 2019]
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With regard to our first statistical aim, we wish to identify regions in the sample space
where the distributions F' and G are significantly different and to use this information,

e.g., to infer redshift evolution (given two observed samples) or to inform improvements in
simulation codes (by comparing simulation output at one wavelength to HST data at that
same wavelength), etc.

7 [Slide credit: Peter Freeman]



Ex 2: Comparing Distributions in High Dimensions.

Calibrate Forward Model with Internal Parameters

@ Goal: Simulate weak lensing data to constrain parameters of the
Lambda CDM model in "Big Bang” cosmology

8 [Image credit: Lin & Kilbinger, 2018]
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Statistical Setting: Two-Sample Test

Suppose we have two samples:

X0...,X° ~P and X!,....X!~P

A two sample-test would ask whether Py and P; are the same; i.e., it would
test the null hypothesis

Hy: f(x|]Y =0)=f(x|]Y =1) forallxe X

10



Comparing Distributions:

Traditional Approaches Focus on Univariate Tests

T test, 1(26.87) =-20.79, p = <0.0001, n =40
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1. We are looking for regions in the sample space where

the two populations have signiticantly different densities

Local significant differences

Decision

f(x)=g(x)
= f(x)>g(x)

f(x) = f(x)<g(x)

e

12 [Figure credit: llmun Kim 2016]



2. We are searching for differences in high-

dimensional space (e.g., each data point could

represent an image or a sequence of images)

e Population1

e Population2

13 [Figure credit: llmun Kim 2016]



Two-Sample Test via Regression
[Kim, Lee and Lei 2019]

Suppose we have two samples:

X0...,X0 ~P and X,...,X!~P

A two sample-test would ask whether Py and P; are the same; i.e., it would
test the null hypothesis

Hy: f(x|Y =0)=f(x|]Y =1) |forall x e X
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Two-Sample Test via Regression
[Kim, Lee and Lei 2019]

Suppose we have two samples:

X0...,X0 ~P and X,...,X!~P

A two sample-test would ask whether Py and P; are the same; i.e., it would
test the null hypothesis

Hy: f(x|Y =0)=f(x|]Y =1) |forall x e X

By Bayes rule, this is equivalent to testing

Hy:PY =11 X=x)=P(Y=1) /forall xe X
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Why Two-Sample Test via Regression?

@ Can adapt to any structure in X for which there is a suitable
regression technique.

@ The power of the test is directly related to the the MISE of the
chosen regression estimator [Kim et al, 2019]
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It the chosen regression estimator has a small
MISE, the power of the test is large over a
wide region of the alternative hypothesis

Theorem 1. Suppose that the regression estimator m(X) is
a linear smoother satisfying

sup E / ((x) — m(x))? dPx (x) < Cobn, ) (2)
meM X

where Cy is a positive constant, 5, = o(1), 6, > n~},
and M is a class of regressions m(X) containing constant
functions. Let L}, be the upper o quantile of the permuta-
tion distribution of the test statistic T" on validation data.!
Then for any o, B € (0,1/2), there exists a universal con-
stant C such that

e Type I error: Py (’7\" > t;) <a and

e Typell error:  sup PP; ("7\" < t;) <B
meM(C1é,)

against the class of alternatives M(C16,,) defined by

{m EM: /X (m(x) — m1)* dPx(x) > Cl5n},

[Ref: Kim, Lee, & Lei;

for n sufficiently large. EJS 2019]




Why Two-Sample Test via Regression?

@ Can adapt to any structure in X for which there is a suitable
regression technique

@ The power of the test is directly related to the the MISE of the
chosen regression estimator [Kim et al, 2019]

@ The regression test tells you not only if, but also how, the two
samples are different in space of observables
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Let's return to the galaxy morphology example...

Figure 7: Examples of galaxies from (a) the low-SFR sample &y versus (b) the high-SFR sample &;.

@ Divide 2736 galaxies from the CANDELS program into two
populations based on SFR: “Low SFR" vs "High SFR" sample

@ Consider seven morphology summary statistics jointly

@ Are the morphologies the same or not (compared to chance)?
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Regression Test to Identify If and How Two

Distributions Differ in 7-Dim Feature Space

JHighsFR > fLowSFR

Local significant differences

Decision

f(x)=g(x)
= f(x)>g(x)
— f(x)<g(x)

fHighSFR < fLowSFR

Figure 9: Results of two-sample testing of point-wise differences between high- and low-SFR galaxies in a seven-dimensional
morphology space. The red color indicates regions where the density of low-SFR galaxies are significantly higher, and the

blue color indicates regions that are dominated by high-SFR galaxies. The test points are visualized via a two-dimensional
diffusion map. Figure adapted from [49).
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We can use a similar approach to compare
forward models with internal parameters

Test Hy: L(x;0) = L(x;0) for every x € X and § € ©

~~

versus Hi : L(x;0) # L(x;0) for some x € X and § € ©

@ Our framework can help answer:
@ |IF one needs to improve the emulator model
@ WHERE in parameter space © the fit might be poor

@& HOW the distributions of emulated and high-fidelity simulated data
may differ in observable space X

21



Two-Step Procedure: Local Test at Each Parameter.
Global Test of Unitormity of Local P-Values.

Algorithm 1 Local Test

Input: parameter value 6y, two-sample testing procedure, num-
ber of draws from the true model, nim,0 and from the estimated
model, ngn, 1

Output: p-value py, for testing if L(x; 80)=L(x;6) for every

,ooo, X5} from L£(x;6p).

! Ngim,
_~

: Sample S; = {X1,..., X} }from L(x;6)).

: Compute p-value pg, for the comparison between Sg
and S;.

: return pg,

Algorithm 3 Global Test
Input: reference distribution (), B, uniform testing procedure
. Output: p-value p for testing if L(x;6) = L(x;6) for every x
@ For the local test, our regression test and 0

allows us to accommodate any data type
with interpretable diagnostics.

@ Global test is consistent against all
alternatives if the local test is consistent.

6:

1
2
3:
4
5

: fori e {1,...,
sample 6; ~ r(6)
compute py. using Algorithm 1

- end far

: Compute p-value p for testing if (pg, )Z_, has a uniform
distribution.
rewurn p



Back to Example: Simulate Weak Lensing Data
to Constrain Cosmological Parameters

Peak Count Simulation — Parameter Grid @ Use CAMELUS [Lin & Kilbinger
2015] to simulate weak lensing
convergence maps

= binned peak counts x € N/

@ Batch of 200 train + 200 test
simulations at 50 different
cosmologies/parameter settings.

o Fit 3 different likelihood models:
Gaussian, Poisson, MAF

Test Hy: L(x;0) = L(x;6) for every x € X and § € ©

~~

versus H : L(x;0) # L(x;0) for some x € X and 0 € ©




Do we need more simulations to fit the data

well or are the current fits good enough?

@ Based on the KL loss we would choose the Gaussian likelihooa
model — but our local test p-values reveal that the Gaussian
model is rejected at all parameter values.

Gaussian Poisson Gaussian Poisson
' wi
3 |

- \a%\ - log(KL) = - 8.092 log(KL) = -8.076 log(KL) = - 5.824
q.;l-- " - Pglobal < 1e-06 Pglobal < 1e-06 Pglobal = 0.001

02 04 06 08/ 02 04 06 08 02 04 06 08
Qp

i |

p-value,, 45 1o

log(KL) = -8.095 log(KL) = -8.079 log(KL) = -5.832
Pglobal < 1e-06 Pglobal < 1e-C6 Pglobal = 0.124

] ] ] ] ] ] ] ] ] ] ] ] ]
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Even it it's not feasible to simulate more data, our
regression test provides valuable diagnostics...

P(Y=1) forallxe X
# P(Y =1) forsomex € X

o the difference |m(x) — 71| provides information on how well the
emulator fits the simulator in feature space: we can test whether
'm(x) — 71| is statistically significantly higher!
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Emulator diagnostics: Our regression test tells us
how the two samples are different in N/

@ According to our random forest regression, bins with low counts (e.g.
bin X;) contribute the most to the rejection of the Gaussian model.

Partial dependence
plot for variable X;.
The regression test is B B B B
distinguishing ol g Test|r?1(X)-n;“1
between the discrete » Significant
true distribution and NERRE RN
the approximate
Gaussian continuous
distribution.
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Statistical Challenges for Complex Models

@ Forward problem: Does data from the approximate model have
the same distribution as high-fidelity (simulated or observed) data?

@ Ask if two distributions are different, and if so, how they differ in
high dimensions (capture dependencies between all variables)?

Xi,....Xm~F and X* ... X*~ F*

/@ Inverse problem: Suppose we have a forward model Fg that \

implicitly encodes the relationship between parameter 8 of
interest (input) and high-dimensional observable data X (output).

@ Given observed data D={X;,.. X,}, can we infer the true
parameters 6 with valid measures of uncertainty (confidence sets)?

\ Pld € R(D)| > 1 —a j
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What is Likelihood-Free Interence?

Likelihood
Parameters of —y

Data Generating Observable Data
Process 6

However, for some complex phenomena, we may not be able to evaluate
the likelihood function, which is implicitly encoded by the simulator.

Like%od

Data Generating Input Output Observable Data

Forward Simulator

Parameters of

Image credit: Nic Dalmasso

@ Inference on parameters in the second setting is called

likelihood-free inference (LFI).
28



Classical LFI: Approximate Bayesian
Computation (ABC)

Prior distribution of

Observational datg model parameter 6

v

(2 Given a certain model,
perform n simulations, each
with a parameter drawn from
the prior distribution

(D Compute summary statistic
1 from observational data

Simulation 1 Simulation 2 Simulation 3 Simulation n

3 Compute summary - l‘
l'I2 I"I 3

statistic i, for each My
simulation

STRDEE X X

@) Based on a distance p(*,*)
and a tolerance &, decide for

each simulation whether its | |
summary statistic is sufficiently | -
close to that of the observed

data Posterior distribution of (& Approximate the posterior

model parameter 6 distribution of 6 from the distribution
of parameter values 6, associated
with accepted simulations.

mage credit: Sunnaker et al. 2013



Changing LFIl Landscape

@ More recent developments use ML algorithms to directly
estimate key inferential quantities from simulated data

{(01,X1), (92,X2), e ooy (HB,XB)}, where 0 ~ 71'(9), X ~ Fg

@ Posteriors [e.g., Papamakarios et al, 2016; Lueckmann et al, 2016; Izbicki et
al, 2019; Greenberg et al, 2019]

@ Likelihoods [e.g., Izbicki et al, 2014; Thomas et al, 2016; Durkan et al,
2020: Brehmer et al., 2020]

@ Likelihood ratios [e.g, Cranmer et al, 2015; Thomas et al, 2016; Hermans
et al, 2020; Durkan et al, 2020; Brehmer et al, 2020]

@ These new training-based approaches provide amortized
inference. Can handle complex high-dimensional data

without relying on summary statistics.
30



So What's Missing?

& Statistical tests and confidence sets are the hallmarks of scientific
inference but have not received much attention in LFI.

@ Given observed data D={X;,.. X,}, can we infer the true
parameters B with valid measures of uncertainty for small n?

P e R(D)| >1—«
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A New Inference Machinery for Frequentist LFI

@ Bridges ML with classical statistics to provide:

(i) valid inference: confidence sets and hypothesis tests with
finite-sample guarantees (Type | error control and power)

(ii) practical diagnostics: check actual coverage across
parameter space

(ili) modular procedures: compatible with any test statistic and
different types of data
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Confidence Sets and Hypothesis Testing in a Likelihood-Free Inference Setting
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Abstract

Parameter estimation, statistical tests and confi-
dence sets are the cornerstones of classical statis-
tics that allow scientists to make inferences about
the underlying process that generated the ob-
served data. A key question is whether one can
still construct hypothesis tests and confidence sets
with proper coverage and high power in a so-
called likelihood-free inference (LFI) setting; that
is, a setting where the likelihood is not explic-
itly known but one can forward-simulate observ-
able data according to a stochastic model. In this
paper, we present ACORE (Approximate Compu-
tation via Odds Ratio Estimation), a frequentist
approach to LFI that first formulates the classical
likelihood ratio test (LRT) as a parametrized clas-
sification problem, and then uses the equivalence

1. Introduction

Parameter estimation, statistical tests and confidence sets are
the cornerstones of classical statistics that relate observed
data to properties of the underlying statistical model. Most
frequentist procedure with good statistical performance (e.g.,
high power) require explicit knowledge of a likelihood func-
tion. However, in many science and engineering applica-
tions, complex phenomena are modeled by forward simu-
lators that implicitly define a likelihood function: For ex-
ample, given input parameters ¢, a statistical model of our
environment, climate or universe may combine determinis-
tic dynamics with random fluctuations to produce synthetic
data X. Simulation-based inference without an explicit
likelihood is called likelihood-free inference (LFI).

The literature on LFI 1s vast. Traditional LFI methods, such
as Approximate Bayesian Computation (ABC; Beaumont
et al. 2002; Marin et al. 2012; Sisson et al. 2018), esti-
mate posteriors by using simulations sufficiently close to


https://arxiv.org/abs/1911.11089

Equivalence of Tests and Confidence Sets

Key ingredients:
@ data D = {Xl, ,Xn}
@ a test statistic, such as the likelihood ratio statistic LR(D; 6))

@ an a-level critical value Cy, o

Reject the null hypothesis Hy if LR(D;6y) < Cg, «

Theorem (Neyman 1937)

Constructing a 1 — « confidence set for 0 is equivalent to testing
HO:(9:90 VS. HA:Q#Q()

for every 0y in the parameter space.




1. Fixed 6. Find the rejection region for test statistic A.




2. Repeat for every 6 in parameter space.




3. Observe data D = D. Calculate A(D;0).

0.0 -

2.5 -

5.0 -

7.5 1




4. Construct (1 — «) confidence set for 6.

0.0 -

2.5 -

5.0 -




How do we turn the construction into practical procedures?
“Wrinkle”: The Neyman construction requires one to test

H()Z@Z@O VS. HAZH#(Q()

for all 6y € O.

Key Realization: The main inferential quantities like
© the test statistic 7(D;6y),

@ the critical value Cy, , or the p-value p(D;0) of the test
© the coverage P|0y € R(D)] of the confidence set

are conditional distribution functions which often vary smoothly as a
function of the (unknown) parameters.

Rather than relying solely on samples at fixed parameter settings (standard
Monte Carlo approach), we can interpolate across the parameter space
with ML algorithms.




Our Inference Machinery

Likelihood-Free Frequentist Inference

[ Proposal ]
lo

Simulator

g B l----(Reference Distribution]

Classification

\ 4
Critical or Odds and - .
P-Value Test Statistics lagnostICS
A

~
Hypothesus \ Confidence
C Data D Testing | | Setforo

J




Estimate Odds via Probabilistic Classification

Simulate two samples:
° {(ekaxkayk — 1)}
® {(elaxbifl — O)}B/2

B/2 , where 0 ~ 7w(0), X ~ Fy

where 6 ~ 7(0), X ~ G

Probabilistic classifier r:
r:(0,X) — P(Y =1|X,6)

Define the odds at 8 € © and fixed x € X as

PY = 1|x,0)
P(Y =0|x,0)

O(x;0) :=

Interpretation: Chance that x was generated from Fy rather than G.




Test Statistic Based on Odds Ratios (ACORE)

Odds Ratio: OR(x; 6y, 01) = 8&52(3

Interpretation: Chance that x was generated from 6y rather than 6.

Suppose we want to test:
Hy:0 €0y vs leeg_i@o

We define ACORE test statistic:

(D: Q) 1= inf S log (OR(X®bs: 6, . 6
F(D:60) = sup  inf, 3 lox (OR(X{™:60.01))

Theorem (Fisher's Consistency)

If P(Y =1/0,x) =P(Y =1]0,x)V0,x = 7(D;O0g) = LR(D; b))

v




Left Branch: Estimate Critical Values or P-Values

Simulator

g .
"/B

Y

Critical or
p-Value

/ . . . . .
We use B simulations to estimate critical values.




Estimate Critical Values Cy, .,

To control Type | error at level a:
Reject Hy : 0 = 0y when 7(D;0y) < Cy, .., Where

Cop.o = argsup {C :P(7(D;6p) < C |0 =106y < a}.
CeR

Problem: Need to estimate|P (7(D;0) < C'| 0))for every 6 € O,

Solution: F,(C|0) = P(7(D;0) < C|0) is a conditional CDF, so we can

estimate its a-quantile via quantile regression F,r_|91(oz|9).




Construct Confidence Set via Neyman Inversion

Critical or Odds and
p-Value Test Statistics
Hypothesis ) Confidence
( Loy testing set for 6




Right Branch: Checking Actual Coverage Across ©
How do we check coverage P (8 € R(D)) as a function of § € O7
Note: (P (0 € R(D)|0) = E[I(0 € R(D))|6]

That is, we can estimate empirical coverage across the entire parameter
space by regression (probabilistic classification):

Simulator

@ Sample §; and data D; ~ Fy,

@ Construct confidence set R(D;)

/Diagn'ostics/ e FOr {67/7 R(I)Z)}ZBzuly l’egl’eSS

Confidence
set for @

How close is the actual coverage to the nominal confidence level 1 — 7




How do we implement our LFI machinery in practice?

Likelihood-Free Frequentist Inference

[ Proposal )
lo

Simulator

f]’ B l----(Reference Distribution)

Classification

\d
Critical or Odds and Di b
P-Value Test Statistics agitone
A
Hypothe3|s 7 Confidence
C pata’h) Testing | *| Setfore




A Practical Strategy

Simulator F,

LO]' B t- - [ Reference Distribution G j

Classification ::b ——-

Odds and
Test Statistics

(A) Use the cross-entropy on a held-out set to select probabilistic classifier
and sample size B for learning the odds




A Practical Strategy

Simulator F

'_C7' B l- - ( Reference Distribution G j

Classification |----

l

Odds and
Test Statistics

(B) Compute the optimization step in ACORE with available computational
budget.




A Practical Strategy

( Proposal 7(6) )

lo

Simulator F,

/

G-' /
J B

\ 4
Critical or
p-Value

(C) Use our diagnostic tool to determine the quantile regression algorithm
and sample size B' to achieve nominal coverage across ©.




oy Example: Signal Detection in High Energy Physics

@ Particle collision events counted under the presence of a
background process.

Observed data D = (X, Xy, ..., Xyp)

X = (N, M), where N ~ Poisson(b+ v), M ~ Poisson(b)

® The observed data D consist of n=10 realizations of
X=(N,M), where

@ N is the number of events in the signal region,
® M is the number of events in the background/control region

@ Unknown parameters:

@ intensity of signal (v); intensity of background (b)

S



Constructed Confidence Set for a Particular Xobs
Our proposed strategy selects the BLUE contidence region

90% Confidence Set, Exact LR, Estimated C

. . .= RFQR, B'=1000
2.51 E="a Deep QR, B'=25000
-] Exact LR confidence set

0.0 -
80.0 825 85.0 87.5 90.0 925 95.0 97.5 100.0
Background b

@ Left: 90% confidence set computed with the exact LR statistic
but estimated critical value. Estimating C can be challenging.
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Constructed Confidence Set for a Particular Xobs
Our proposed strategy selects the BLUE contidence region

90% Confidence Set, Exact LR, Estimated C 90% Confidence Set, Estimated OR and C

= = == ACORE, B=25000

L-"a ACORE, B=100000
=" ACORE, B=200000
-] Exact LR confidence set

0.0
80.0 82,5 85.0 87.5 90.0 925 95.0 97.5 100.0 O'go.o 82.5 85.0 87.5 90.0 92.5 95.0 97.5 100.0
Background b Background b

@ Left: 90% confidence set computed with the exact LR statistic
but estimated critical value. Estimating C can be challenging.

@ Right: 90% confidence set with both estimated LR statistic and

critical value. This is the true LFI setting.
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Diagnostics: Do We Achieve Nominal Coverage
(Type | Error Control) Across the Parameter Space?

]P)[H()ER(D)‘OZO()]ZI—CV fOI”aHO()E("‘)

Estimated Coverage Over (v, b) Space

Heat map of estimated coverage
for a confidence set that did not
nass our goodness-of-fit diagnostic

@ Overall coverage of confidence set
Is correct (92% vs the 90% nominal
coverage)

® However, the set undercovers in
low-signal and high-background
regions.

Background b
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Take Away: Forward Problems - Validation

® We can leverage regression methods (probabilistic
classifiers) to identify IF and HOW two samples differ.

X,y Xy~ F and Xi,..., X} ~ F”"

JHighSFR > fLowSFR

Explored parameter regions

D

A A
fHignsFR < fLowSFR
MRLens
Figure 9: Results of two-sample testing of point-wise differences between high- and low-SFR galaxies in a seven-dimensional
morphology spac red color indicates regions where the density of low-SFR galaxies are significantly higher, and the
blue color indica gions that are dominated by high-SFR galaxies. The test points are visualized via a two-dimensional
diffusion map. Figure adapted from [49].
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Take-Away: Inverse Problem - Calibration

@ We can construct confidence sets with nominal coverage,
and provide diagnostics, even without a tractable likelihood.

Likelihood-Free Frequentist Inference

Confidence
Set for @




EXTRA SLIDES START
HERE



Results from Joint Analysis in 7 Dimensions:
Galaxies with significantly higher representation in low-SFR
sample (top) vs in high-SFR sample (bottom)

Figure 6: Galaxies in the test set with the highest significant difference |m(x) — 71| according to our local test in
feature space, Algorithm 4| (a) Galaxies that are more representative of the low-SFR sample So, and (b) galaxies more
representative of the high-SFR sample &;. The first group of galaxies presents undisturbed and concentrated morphologies,
while the latter galaxies appear more extended and/or disturbed. This is in line with what is expected by astronomers
when comparing actual low-SFR and high-SFR galaxies.
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Quality Assurance of Simulation Models
by High-Dimensional Ensemble Consistency Testing (HECT)

State of the art:
PCA-based
testing

!

%

Initial condition
uncertainty

'

Analysis Time ——>»
HECT:
7 High-dimensional
Foracast 7 ';',;\.- | goodlness-of-flt test
uncertainty ) everaging

probabilistic classifiers
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How Does Our Approach Scale?

Consider an example where the forward model is just a MVG distribution
N(0,1;). Construct a confidence set for the unknown mean 8 € R?.

Suppose the observed data are Xy,..., X9 ~ N(0,1;), 50 n =10
and @ = 0 (unknown parameter).

We first assume that the likelihood can be evaluated, but that we do
not know the distribution of the test statistic under the null.

Compare our results to exact LRT and exact BF (baseline).

Compare our results to Crossfit LRS — a “universal inference”?

method for constructing valid finite-sample confidence sets in such
settings without regularity conditions by averaging the LR over two
data splits.

'Wasserman, Ramdas, and Balakrishnan: PNAS 2020




Known Likelihood Setting in 2D: Examples of
Constructed Confidence Sets (All Valid)

Known likelihood, 90% Confidence Set Known likelihood, 90% Confidence Set Known likelihood, 90% Confidence Set
2.0 o—mmmm--m - - - _—_—_— .

[ exact LR [ exact LR
1.5 51 universal ) universal
« « «* known LR, B'=1000 « « »* known LR, B'=1000

1.0

0.5 51 . A
0.0 R 01 Y \ .
-0.5 51 -0.

-1.0

[ exact LR
-1.5 universal
« . .» known LR, B'=1000

-2.0 o-———————— -2.0
-20 -15 -1.0 -05 0.0 05 1.0 15 2.0 -20 -15 -10 -05 0.0 05 1.0 15 2.0 -20 -15 -10 -05 0.0 05 1.0 15 2.0

6 6 6,

When d=2, our method “known LR” (GREEN) returns confidence
sets that are similar to “exact LR” (BLUE), but smaller than the
more conservative universal inference approach with “crossfit LR”
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Coverage and Power for Known Likelihood

Gaussian Model, Known Likelihood Setting

d=10

d=20

d=50

d=100

Coverage of LR + Crit. Value Est.

0.91 = 0.03

0.91 = 0.03

0.88 = 0.03

0.88 = 0.03

Coverage of Crossfit LRS

0.993 £+ 0.008

0.997 £+ 0.005

1.000 £ 0.000

1.000 = 0.000

Confidence Set Power Across ©, d=10

— Exact LR
=+ Crossfit LRS
LR + Crit. Value Est.

Confidence Set Power Across ©, d=20

10 15 20 25 30
116°11?
Confidence Set Power Across ©, d=50

— Exact LR
w+ Crossfit LRS
LR + Crit. Value Est.

= = ®m m e Em e e e e eses L EERS T R e =" w—w w—=
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‘J

w—— Exact LR
w—+ Crossfit LRS
LR + Crit. Value Est.

10 15 20 25 30
16:112

15 20 25 30
18- 12

g — Exact LR
L == Crossfit LRS
' LR + Crit. Value Est.

15 20 25 30
18-11°

Our approach for estimating critical values yields the same power as the

exact tests even in high dimensions, with a modest sample size of B'=5000.
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LFI Setting in 2D: Examples of Constructed
Confidence Sets (All Valid)

2D Gaussian Example 2D Gaussian Example 2D Gaussian Example
90% Confidence Set ; 90% Confidence Set . 90% Confidence Set

BFF
ACORE
[ Exact LR

BFF BFF
ACORE . -1.0 ACORE
[ ExactLR [ ExactLR

-1.5 . v . . . -1.5 . - -1.5 - . . . .
15 -10 -05 00 05 1.0 . 215 -1.0 -05 15 -10 -05 00 05 1.0

o . A . . A

When d=2, ACORE and BFF confidence sets (for B=B'=5000) are
comparable with the contfidence sets.
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Coverage and Power in an LFI Setting

Gaussian Model, Likelihood-Free Inference Setting

d=1

d=2

d=5

d=10

Coverage of ACORE

0.92 = 0.07

0.92 £+ 0.07

0.90 = 0/03

0.90 £+ 0.03

Coverag e of BFF

0.94 &+ 0.06

0.89 = 0.10

0.91 £+ 0!03

0.91 + 0.03

Confidence Set Power Across ©, d=1

a8

J

ACORE

BFF
= Exact LR
- = [Exact BF

Confidence Set Power Across O, d=2

1.01

. (7
/
0.8

0.6

5 10 15

116°|]?
Confidence Set Power Across ©, d=5

20 25 30

ACORE

BFF
m— Exact LR
- = Exact BF

15
16°11°

In higher dimensions, ACORE and BFF confidence sets are still valid but lose

20 25 30

ACORE

BFF
m— Exact LR
- = Exact BF

0

10 15
1162112

20 25 30

, Confidence Set Power Across ©, d=10

ACORE

BFF
m— Exact LR
- = Exact BF

15
118°11°

some power with respect to their exact counterparts.
64

20 25 30




