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Abstract. Energy production throughout the world is transitioning from fossil fuels to renewable3
sources such as wind power and solar power. This transition has been gradual - over half of the world’s4
electricity is still produced by coal, oil and gas - but must accelerate to meet global emission targets.5
This paper examines the contributions that mathematical modeling can make to help accelerate this6
transition. The models we catalog are confined to optimization and equilibrium models, but cover7
a range of physical scales and time scales. Our focus is on novel model formulations that can help8
overcome the challenges of the transition by unpicking the complexity inherent in many settings and9
quantifying the tradeoffs that must be made when developing energy policy.10
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1. Introduction. The world is undergoing a transition from using fossil-fuel13

energy that emits greenhouse gases (mainly carbon dioxide) to using energy that14

does not. This transition is a global response to calls to limit global warming that15

has been caused by the emission of greenhouse gases over the post-industrial era.16

The current scale and speed of this transition appears insufficient to keep global17

temperatures below agreed targets. There are many technical, economic, social and18

political reasons for this slowness that have been canvased in a number of recent19

reports (see e.g., [1, 2, 7]).20

Our purpose in this paper is to examine the contribution that mathematics and21

mathematical models can make to understanding and overcoming the barriers that22

are faced in the transition. Those barriers include affordability, reliability, industrial23

competitiveness, and trusted information. The contribution of the paper is primarily24

to present mathematics; it is not intended to be a survey of existing energy models,25

of which there are many (see, e.g., [55, 21]).26

In particular we will focus on what we call the architecture of energy systems,27

which consists not only of the physical infrastructure for generating and transporting28

energy, but also the market and contractual arrangements that give incentives for29

investing in this infrastructure and that allow for it to be operated in an efficient30

manner. Our aim is not so much to deliver the correct answer or define an optimal31

solution, but rather to pose questions that can benefit from a mathematical modeling32

approach. Many of our approaches incorporate techniques to promote flexibility [15],33

including multiple types of dispatchable generation, demand response, energy storage34

and enhanced connectivity.35

We are interested in the architecture of systems that generate mainly green energy,36

a catch-all term that encompasses renewable energy from sources that are constantly37

and naturally renewed such as hydroelectric power, wind power and solar power,38

and energy from other sources with negligible carbon emissions (such as nuclear and39

geothermal electricity), or net-zero emissions (such as biofuels). Such systems will be40

an essential part of the transition, along with new technologies that fill gaps in our41
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operating landscape.42

Our use of the adjective green in this context might be viewed by some as con-43

tentious, as some activities associated with green energy production (such as building44

hydroelectric dams or mining lithium) can damage the natural environment. As we45

discuss later in the paper, some of this damage might be justifiable when traded off46

against the damage avoided by reducing carbon emissions, so it would be unwise to47

preclude such activities from the mix of green energy we study.48

Designing the green energy system of the future is a global problem involving49

interactions between countries across the world and requiring long term investments,50

changes of operational procedures, trade-offs and innovations. While internationally51

coordinated efforts are likely to be the most effective and economical, this is hampered52

by political discord, disparate goals and perspectives on the severity of the issue, and53

different ideas on the best course of action to transition into a green energy system.54

Even within countries, different agents view the risk of inaction, or incorrect actions,55

in contrasting ways, and will make decisions in their own interests in response to56

incentives and regulations.57

The challenge then lies mainly in designing appropriate incentives and regulations,58

so agents with different attitudes to risk align their actions with the objective of global59

emissions reduction. Our approach in this paper is to look at tools that capture the60

risk in each agents problems, suggest models and approaches to invest in a portfolio61

of technologies that may reduce the variability in outcomes and enhance the ability to62

finance their adoption, whilst quantifying the differences between these agent-driven63

results and one that might arise with a system-wide perspective.64

A green energy system can be viewed along three orthogonal dimensions. We65

show two of these in Figure 1.66

Fig. 1. The energy transition in two dimensions

In one dimension one can vary the physical scale of the system. At the smallest67

scale, one might consider a household with solar panels, a battery and a plug-in elec-68
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tric vehicle. This could form part of a micro grid, which in turn connects to a larger69

system with industrial electricity supply and demand. High voltage electricity trans-70

mission lines link these together into an electricity network, that may be connected71

to neighbouring networks by transfers along tie lines. The system might transport72

energy from place to place using other carriers such as hydrogen, ammonia, natural73

gas, oil, coal or uranium. Transfers of energy are accompanied by financial flows,74

and derivative instruments that derive their value from these transactions. At the75

largest (global) scale the energy and financial flows are between different regions and76

economies; the design and operation of new forms of contracts and financial flows are77

critical to enabling the transition process.78

The overall system is a collection of technologies at different physical scales, con-79

nected through a network that might be electrical or some other energy transport. To80

answer questions about the architecture of this system, or the design and operation81

of a component, one can consider a particular scale, in which case the interplay with82

larger (or smaller) scales needs to determine boundary interactions. Such boundary83

interactions may be physical, financial, regulatory or involve some form of incentives.84

The second important dimension to consider is time, and implicitly the evolution85

of uncertainties over varying time scales. Energy is produced and consumed continu-86

ously, but questions about the architecture of energy systems are posed with different87

temporal resolution. Also, information flows are often uncertain, and are resolved at88

a variety of time scales. Predicting new technologies or policy changes, or the increase89

in electrical demand due to transitions in domestic heating or transport, or the in-90

stallation and closing of different generation plants can involve complex models and91

forecasts and these can evolve over time within a physical or computational learning92

process. Dealing with uncertainty in forecasts requires models of some sophistication.93

In the short term, the intermittency of solar and wind power requires backup sup-94

ply in the form of fast-start generation, load reduction or batteries, so that supply is95

reliable. On a longer time scale, energy might need to be stored (e.g., in a hydro reser-96

voir) for use in future months when the supply of other sources of energy are lower.97

The aforementioned issues relate to parametric uncertainties - things we know the98

form of but are unclear about their actual levels. In contrast, model (or structural)99

uncertainty arises in problems that involve long-lived capacity choices and need to100

account for many possible states of the world (e.g., emission constraints, technology101

changes, political environment) in future decades.102

The third important dimension represents social and political or behavioral as-103

pects. These can involve interplay with other (political) institutions, agencies (coun-104

tries or adversaries) or policies and information. While we discuss models of behavior105

related to (mathematical) game theory, this paper does not address social/political106

factors or their evolution. Nonetheless, it is understood that interactions of these107

types can affect the efficiency of designed systems and how local or national behavior108

influences the outcomes of a given architecture.109

The paper examines a number of policy questions arising in the green energy110

transition that can be viewed in the above three dimensions. Despite the enthusiasm of111

advocates for silver bullet solutions to the green-energy transition, the policy questions112

that arise are complex and do not admit simple intuitive solutions. Our interest in113

this paper is in formulating these questions in mathematical terms with a view to114

representing the complexity of the tradeoffs involved. Problem formats that model115

interactions, and determine what regimes are active at any given time are important116

in understanding overall structure of solutions, even if specific details are abstracted117

or approximated.118
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Our mathematical framework draws on two core methodologies: optimization119

and game theory. Optimization is a powerful tool for exploring the tradeoffs that120

are inevitable when comparing competing technologies. For example, it is tempting121

to remove all fossil-fuelled electricity capacity from a region to make its electricity122

100% renewable, but this might be very expensive compared with a system with 1%123

of fossil-fuelled generation capacity that is used sparingly (see, e.g. [25]). System124

optimization models make these tradeoffs explicit, and enable decision makers to125

arrive at optimal combinations of technologies that will meet desired emission goals126

at least cost. For models involving time and uncertainty, the optimization models127

become more complicated, and must deal with estimates of probability distributions128

and attitudes to risk.129

The second methodology guiding our approach is game theory. The transition to130

green energy emerging in most countries is driven by competing commercial agents,131

responding to incentives and regulations set by governments. In its simplest form, this132

setup is known by economists as a principal-agent problem [31], in which a leader takes133

some action and a number of followers respond by optimizing their own objectives in134

a competitive environment. There are many different versions of this simple game135

model that arise from varying assumptions on the degree of strategic behavior of136

agents and the knowledge that each agent has at their disposal. The models can137

capture features such as barriers to entry, collaboration or contrasting risk attitudes.138

In summary, the mathematical study of the architecture of green energy systems139

involves suites of models encompassing different resolutions in each dimension. The140

models can be optimized to determine some social plan of action that maximizes141

overall welfare subject to constraints, e.g., on emissions. This gives a gold-standard142

benchmark for more realistic policies that will attempt to achieve results through143

incentives (e.g., carbon taxes) and regulations (e.g., renewable energy standards).144

The extent to which the outcomes of these policies fall short of the gold-standard145

benchmark can be evaluated by game-theory models.146

The paper is laid out as follows. In the next section we classify in mathematical147

terms the types of optimization and equilibrium models that will be applied to the148

various settings we study. Section 3 then describes a collection of example problems149

that can be studied using a selection of models cataloged in Section 2. Section 4 is150

devoted to a discussion of risk, and how one might devise models that represent the151

partial equilibrium that emerges when agents have contrasting risk measures. We152

then make some concluding remarks in Section 5.153

2. Mathematical Models. While there are many mathematical constructs that154

could influence the choice of architecture, we will confine ourselves in this paper to155

discussing approaches that are based in the field of optimization, and specifically to156

approaches that utilize constraints to model the underlying physical nature of the157

problems at hand. It is understood that any such model needs to be populated158

with data that instantiates these mathematical relationships. Different data will be159

relevant for models at disparate scales, but we will not cover the acquisition details160

of this. Nevertheless, we will consider the uncertain nature of these data and suggest161

models that account for this uncertainty using stochastic optimization approaches. In162

this section, we briefly outline the main formats that we will use in the sequel.163

2.1. Optimization models. Our models will consider decision variables x that164

live in a finite dimensional space Rn. These variables are constrained to lie in a subset165

X of Rn and are used to define an objective function f that maps Rn to the real line,166

and a vector valued function g that is constrained to lie in some cone K, resulting in167
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the optimization problem168

(2.1) min
x∈X

f(x) s.t. g(x) ∈ K.169

Special cases of the data of this problem lead to formats under consideration, namely:170

1. if f is a linear function, and g is an affine function, X is polyhedral (possibly171

Rn) and K = {0}p × Rm
− , then (2.1) is a linear program (LP)172

2. if in addition X ⊂ Zn1 ×Rn2 (i.e. some of the variables can only take on173

discrete values), then (2.1) is a mixed integer program (MIP)174

3. K can model both equations and inequalities or a mixture of both (as shown175

item 1 above)176

4. if f and g are convex functions of x then (2.1) is a convex optimization177

problem178

5. if ξ is a random variable defined on a probability space (Ω,F ,P), and f(x) =179

c(x)+EP[Q(x, ξ] where Q(x, ξ) is the optimal value of the second-stage prob-180

lem181

min
y

q(y, ξ) s.t. T (ξ)x+Wy = h(ξ)182

then (2.1) is a two-stage stochastic programming problem183

6. if in addition X = {x ≥ 0 : Ax = b}, c(x) = cTx and q(y, ξ) = q(ξ)T y, then184

the problem is a two stage stochastic linear programming problem.185

The formulation of the above two-stage problem assumes that the second-stage186

data ξ is modeled as a random vector with a known probability distribution. In many187

applications the expectation E can be replaced by a more general risk measure ρ.188

The two-stage stochastic programming problem can be extended to a multistage189

stochastic programming problem, in which decisions are made in many stages t =190

1, 2, . . . , T and the random variables define a stochastic process ξt, t = 1, 2, . . . , T .191

After each stage t the values of ξt are realized, and adaptive decisions made in the192

light of this information. Such problems are useful in studying investment problems193

over long time horizons when new information might require existing capacity to be194

retired or replaced.195

A useful special case of multistage stochastic programming is the discrete-time196

stochastic optimal control problem. Here the random variables ξt at each stage t are197

assumed to be independent of those at previous and later stages, and the decision198

variables divide into states x and controls u. This gives constraints:199

xt+1 = gt(xt, ut, ξt), ut ∈ Ut, t = 1, 2, . . . , T − 1200

and objective201

f(x) = E[
T∑

t=1

ft(xt, ut, ξt)].202

In this case the problem has a finite horizon; infinite-horizon versions replace the sum203

in the objective with a discounted infinite series. Stochastic optimal control problems204

are amenable to solution by (approximate) dynamic programming [8, 58].205

It is important here to be specific about the nature of the uncertainty in the206

above models. In most stochastic optimization problems, the random variables are207

assumed to have known distributions that can be estimated from a sample of historical208
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data. A popular approach is to solve a sample average approximation problem using209

the finite empirical distribution [64]. Convergence of this approach with increasing210

sample size relies on laws of large numbers and the central limit theorem, which211

may not hold for heavy-tailed distributions. For stochastic optimization problems212

involving planning decisions made many years in the future, probabilities (e.g., of a213

new technology emerging) are impossible to estimate from historical data, and some214

expert assessment must be made and tested. As identified by Mercure et al [50], risks215

and opportunities in these settings are more important to identify than net present216

values based on discounted expected cash flow. A real-options [13] approach has some217

appeal here though this is difficult to apply in system settings where there are many218

competing and complementary investment options, and limited hedging instruments.219

An alternative approach is outlined in [62].220

Risk-averse stochastic programming problems formulated in scenario trees provide221

another alternative framework that models upside optionality as well as downside risk.222

Binary variables in these models can represent timing decisions, e.g. when to build223

or shut down generating plants, albeit with an increase in computational complexity.224

It is important to recognize that these models are look-ahead optimization models225

[57], with the goal of specifying a well-hedged first-stage decision. The intention226

after the first stage decision is implemented, is to re-solve a new model in a rolling-227

horizon fashion with updated estimates of parameters. How far to look ahead, how to228

appropriately approximate the future, and how to implement the solutions in practice229

are all interesting research questions, with answers that can generally only be settled230

by numerical experiments with context-specific models.231

Finally in some settings one might seek a solution that performs well over a set232

of varying problem data. Robust optimization provides a numerically efficient way of233

doing this by specifying a convex uncertainty set U that defines the data variations234

(see [9]). For example, when the constraint data are uncertain we obtain:235

(2.2) min f(x) s.t. x ∈ X(u), u ∈ U .236

This notion can be extended to compute a distributionally robust solution to a sto-237

chastic optimization problem that performs well for every probability distribution238

lying in a set P. An example formulation would be as follows.239

(2.3) min
x∈X

max
P∈P

EP[f(x, ξ)].240

2.2. Complementarity models. A complementarity problem is a generaliza-241

tion of the optimality conditions of (2.1). In this setting we seek a variable x such242

that243

x ∈ X,F (x) ∈ X∗, xTF (x) = 0244

where F : Rn 7→ Rn, X is now a cone (in many settings the positive orthant in245

Rn) and X∗ is the dual cone X∗ := {w : zTw ≥ 0,∀z ∈ X}. The third constraint246

indicates that x and w = F (x) form a complementary pair and is often written as247

x ⊥ w. The complementary slackness conditions of linear programming are a special248

case of a complementarity problem. While there are many examples of the use of249

complementarity formulations in engineering and economics (see [24, 27]), one par-250

ticular modeling use allows the formulation to automatically switch between regimes251

of operation. For example, in [16] complementarity constraints are used to model252
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automatic tap-changing transformers and other switched electrical devices. Given the253

following constraints,254

v = v̄ + v+ − v−,255

0 ≤ (q − qmin) ⊥ v+ ≥ 0,256

0 ≤ (qmax − q) ⊥ v− ≥ 0,257

it is easy to see that v is at set point v̄ when q is strictly between qmin and qmax,258

whereas if q is at one of its bounds, then v is allowed to move away from the set point259

value.260

A generalization of the complementarity problem is a variational inequality, where261

x ∈ X and F (x)T (z − x) ≥ 0, for all z ∈ X.262

This is sometimes termed a generalized equation, since in the special case of X = Rn
263

it simplifies to the solution of a square nonlinear system F (x) = 0. It is also clear that264

when X is a cone, this is identical to the (cone) complementarity problem. When X265

is a convex set (not necessarily a cone), then the optimality conditions of266

min
x∈X

f(x)267

are in the form of a variational inequality:268

x ∈ X and ∇f(x)T (z − x) ≥ 0, ∀z ∈ X,269

which are necessary and sufficient for optimality under a convexity assumption. For270

the optimality conditions of (2.1), where the constraints g(x) ∈ K have a particular271

representation, Lagrange multipliers can be introduced and the variational inequality272

are the so-called KKT-conditions. In this setting, a constraint qualification may be273

needed to prove equivalence to the optimization. The motivation to call this problem274

format an equilbrium problem arises from the consideration of the variational form of275

the Signorini problem [24]. Specialized techniques for solution are given in [45], for276

example.277

A bilevel program is an example of a hierarchical optimization where a paramet-278

ric version of (2.1), the so-called lower level (follower) problem, is embedded in the279

constraint set of an upper level (leader) case of (2.1). Formally,280

(2.4) min
(x,y)∈X

fU (x, y) s.t. gU (x, y) ∈ KU , y ∈ SOLL(x)281

where282

SOLL(x) := argmin
z∈Y

fL(x, z) s.t. gL(x, z) ∈ KL.283

In other settings, SOLL might consist of the optimal solutions of several linked284

optimization problems as in a non-cooperative game. Here the lower level problem285

y ∈ SOLL(x) can be replaced by a set valued inclusion (x, y) ∈ SOLL that represents286

a more general parametric equilibrium:287

(2.5) min
(x,y)∈X

fU (x, y) s.t. gU (x, y) ∈ KU , (x, y) ∈ SOLL288
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For example, there may be many followers fL(i), i ∈ I, where given the leader’s289

policy choice x, the followers’ actions are assumed to be chosen to give a Nash equi-290

librium, that is, no unilateral improvement for any follower. The leader seeks a policy291

that maximizes overall welfare. The mathematical formulation (2.5) of this problem292

is called a Mathematical Program with Equilibrium Constraints or MPEC. In fact,293

Mathematical Program with Equilibrium Constraints can encompass bilevel programs294

where the lower level parametric optimization problem is replaced by its variational295

form, thus296

min
(x,y)∈X

fU (x, y) s.t. gU (x, y) ∈ KU , y ∈ Y, ∇yfL(x, y)
T (z − y) ≥ 0, ∀z ∈ Y297

where for notational ease we have simplified the lower level problem to298

(2.6) min
z∈Y

fL(x, z).299

Assumptions are needed to guarantee that the variational form is necessary and suf-300

ficient for optimality in (2.6).301

The principal-agent problem is an instance of the bilevel programming problem.302

In this case, the leader is the principal (owner) and the agent (manager) is the follower.303

The agent’s actions y = a are chosen to optimize their expected utility VA(w, a) given304

that the principal sets a reward x = w. The principal optimizes their expected305

utility VP (w, a). Note that the agent only accepts the contract if VA(w, a) ≥ v0, so a306

participation constraint is added to the upper level problem. The bilevel form is thus:307

max
(w,a)∈X

VP (w, a) s.t. VA(w, a) ≥ v0, a ∈ argmax
z∈Y

VA(w, z).(2.7)308

The last constraint in this model ensures that the chosen action is also the agent’s309

best response. It is of course possible to convert this to an MPEC under assumptions310

that guarantee the lower level optimization can be replaced by its variational form.311

2.3. Forecasting models. There is an enormous literature on forecasting that312

utilizes methodologies such as deep neural nets, statistical learning [40] and data313

analytics. In this paper we assume such methods are used to generate forecasts that314

can be used for data provision in our models, but do not describe them further since315

their black-box nature makes it difficult to interpret results and understand the model316

constructs generated. Some references can be found in the following survey papers317

[38, 70].318

3. Examples. In this section we look at examples of problems arising in the ar-319

chitecture of green energy systems that can be modeled using the approaches outlined320

in section 2. Our catalog of examples is loosely ordered by their scale, from the small321

to the large. Furthermore, the models are broadly conditioned on looking at issues322

of flexibility in planning, ensuring the problems determine decisions on technologies323

and capacities that are informed by operational characteristics of the desired energy324

system.325

3.1. Household electricity planning. The simplest agent engaged in the tran-326

sition to green energy is the individual person or household. They make decisions on327

the level and type of energy consumption for heating, refrigeration, cleaning, enter-328

tainment, and transport. Households might choose to use a combination of rooftop329

solar energy, batteries and electric vehicles to meet their needs. If they are exposed to330
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carbon charges and time-varying electricity prices, then they face a capacity planning331

problem that chooses the capacity of solar panels, battery and car battery, and an332

operating policy of electricity consumption and battery charging/discharging to meet333

expected energy needs. This is a two-stage stochastic program in which the first stage334

defines capacity choices and the second stage is an infinite-horizon stochastic optimal335

control problem that defines the operating policy.336

min
z,x,u

K(z) + V337

s.t. V = E[
∞∑
t=0

βtft(xt, ut, ξt)],338

z ∈ Z, xt ∈ X (z, ξ), ut ∈ U(z, ξ).339

Note that the constraint set Z can encode many complicated engineering relationships340

involving the investments z. The state variable xt represents storage and the control341

ut represents charge and discharge of storage as well as electricity purchases and load342

shedding. The set U(z, ξ) represents both household demand for electricity and supply343

of power from investments z. The operating costs ft(xt, ut, ξt) are discounted with344

discount factor β. Details and data for the capital, operating and lost load costs345

and the demand profile are not specified here, but represent samples for different346

operational cases. Of course, many households make investment decisions in solar347

panels and batteries without this sort of analysis as they are typically not exposed to348

varying electricity price and the household savings from optimal operations are too349

small to warrant the solution of a complicated optimization model.350

While much of the energy management can be carried out “behind the meter”,351

agents might interact directly with the electricity market whenever they have a deficit352

or excess of power. Choices between purchase or load reduction (turning off appli-353

ances) can be price directed. Some companies install solar panel systems with built354

in controls that promise guaranteed electricity savings over a fixed time horizon, ob-355

viating the need for households to optimize individually. Such disaggregated control356

has some drawbacks as potential system stability problems may ensue if appliances357

of many agents respond simultaneously to a single price signal without some coordi-358

nation.359

3.2. Aggregators and micro grids. Solar generation falls into two categories,360

residential (often called roof-top) and utility-scale (often called solar farms). Deter-361

mining the sizing of these farms is an optimization problem. Is it better to have a362

large single facility or a distributed collection of smaller ones? The answer will de-363

pend on land availability, and issues relating to the connection of this supply to the364

electrical grid.365

Aggregators combine household demand and solar generation into a single energy366

source. This allows an aggregator to act as a virtual power plant and provide promises367

to deliver at least a certain amount of power/energy in a given time frame. Individ-368

ual households typically cannot make such strong promises due to variability in the369

amount they can supply. Aggregation can reduce that variability, a property that370

is utilized to give diversified investments in the financial industry. Additionally, an371

aggregator can handle issues such as construction delays (a solar farm takes anywhere372

from 6 to 12 months to build), local and municipal permitting and approval processes,373

and ongoing maintenance and operation concerns [11]. The main concerns here are374

electrical engineering issues (and possible legality) related to distributed injection of375

supply, such as voltage support and frequency regulation. Questions arise around the376
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Wholesale market

Aggregator

Prosumers

Supply
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Fig. 2. Aggregator as intermediary between prosumer and electricity market: based on [28]

regulatory policy (see, e.g., [22]) vis-a-vis the size of the aggregate supplier, and also377

to whether innovations such as digital transformers can provide alternative technical378

solutions [51]).379

A schematic showing the typical operation of an aggregator system is shown in380

Figure 2.381

Operational models for aggregators can vary. In [39], aggregators are the inter-382

mediaries between a collection of prosumers (the combination of a producer and a383

consumer) and the electricity market, whereas in [54] a different approach is taken384

where consumers are aggregated in a demand response setting. The aggregator’s de-385

sign problem is to select from a collection of distributed solar energy sources those386

that in aggregate will generate a certain volume of energy with the smallest variation387

in output (essentially the Markowitz model [49] in finance). We consider a design388

where solar energy sources are aggregated and augmented with batteries to smooth389

short-time fluctuations. If we let Q represent the matrix of covariances in energy390

output of solar sources, r be the vector of expected energy outputs, and x = (xi) be391

a binary variable that includes source i or not, we solve392

min
x∈X

cTx+ φ(xTQx)393

s.t. rTx ≥ d.394

X captures other constraints on x, and the objective adds the cost of solar installation395

to the cost φ(·) of batteries to deal with the overall variation in supply. The constraint396

then ensures average power output is above a threshold for interactions with the397

electricity grid.398

In the context of distributed green energy systems, one concern is whether it is399

better to design the system for local use (i.e. use rooftop solar to power residential400

air conditioners directly behind the meter) and store excess locally in some form for401
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later use (disaggregated storage), or is it better to directly deliver the excess to the402

electricity market, or have an aggregator manage the (excess) supply? These choices403

are compounded by supply intermittency when the local user has a deficit of energy404

and needs to procure it from elsewhere. The choice of storage mechanism is part of405

the design, and requires understanding the usage pattern - short or long time storage,406

power or energy requirements. In another section we touch on other aspects of storage407

or aggregated control related to reliability guarantees of the overall system.408

Direct interaction with the market by a prosumer can be modeled as a special409

case of the aggregator problem. Interactions with the electricity market are governed410

by standard mechanisms described in section 3.4. The remaining design decisions411

relate to the pricing of energy flows between the prosumer and the aggregator, and412

the mechanism to control the prosumer demand. For example, the aggregator can413

rent the consumer’s roof at a fixed price, install its own solar panels, and then control414

the energy flows as part of a (large) virtual prosumer. An issue for the aggregator415

is to determine what roof space to rent and at what price (connection charge and416

per unit cost or payment), a so-called two-part pricing model. These models form a417

contract between the prosumer and the aggregator and such contracts can take on418

many forms. A rental contract could pay a fixed amount per month, or might provide419

retail power to the household at a reduced rate. The latter contract must specify how420

the price is indexed to the price of energy, and there is a need to understand how long421

term increases in demand will be treated, a topic that is well-understood by electricity422

retailers. Four different models of how to integrate distributed energy resources (DER)423

into electricity markets are given in [28]. They all rely on following a participant two-424

part pricing model (connection charge and selling price of the aggregator), but differ425

in the regulations that the aggregator faces.426

Aggregation is also possible for plug-in electric vehicles that are currently con-427

trolled by their owners. Imagine a world where a fleet is owned and controlled by428

a corporation and cars are available on demand for a particular trip. This enables429

the corporation to control charging and vehicle use using a similar model to those430

outlined above.431

3.3. Distribution network architecture. Distribution companies operate the432

low voltage networks that distribute electricity from the high voltage transmission433

grid to consumers. These operations are subject to variability from local demand434

and generation but also from equipment failure. Distribution companies can install435

special devices and configure the topology of the network to make it resilient to this436

variability. Dynamic topology control that switches lines in and out of the network437

also provides flexibility [26, 32, 33, 46]. For example, a mesh design (that provides438

redundancy in the form of multiple connection paths) can be configured as a radial439

network, allowing failures to be accurately identified and isolated. Lines (including440

those that are switched out) can be reinforced to reconnect the distribution service441

in case of failure (see for example [66]). In addition to these actions, the distribution442

company can procure flexibility services from battery storage or interruptible load. In443

a green energy system that has distributed battery capacity, these could be utilized for444

short term supply during a reconfiguration process. The type and amount of services445

to be procured depends on their offered cost, the existing flexibility actions available446

to the distribution company, and the level of reliability they require.447
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3.4. Electricity system operations. The economic dispatch model consists of448

buses B, lines L and generators G ⊂ B in an optimization:449

min
(q,θ,y)∈X

∑
i∈G

ci(q
g
i )(3.1)450

s.t. qgi − qdi =
∑

j∈δ+(i)

yij −
∑

j∈δ−(i)

yji, i ∈ B(3.2)451

Bij(θi − θj) = yij , (i, j) ∈ L(3.3)452

− ȳij ≤ yij ≤ ȳij , (i, j) ∈ L(3.4)453

qmin
i ≤ qgi ≤ qmax

i , i ∈ G(3.5)454

where δ+(i) = {j ∈ B : (i, j) ∈ L}, δ−(i) = {j ∈ B : (j, i) ∈ L} specify the455

network structure, Bij , q
min,max
i , ȳij are electrical properties and ci are production456

cost functions (most often linear or quadratic), and qdi is demand, see for example457

[69]. Variables determine active generated power qg, voltage phase angles θ and458

active power flows y. Extensions of this basic problem can be used to incorporate459

different load conditions, failures, and maintenance schedules for instance (see for460

example [41]).461

Locational marginal prices (LMPs), defined by the Lagrange multipliers (dual462

variables) on (3.2), can be shown to maximize total welfare of producers and con-463

sumers in perfectly competitive markets under assumptions of convexity and com-464

pleteness. Under some additional assumptions this is true in dynamic stochastic465

settings as well [23]. This feature is becoming important for renewable systems with466

storage.467

Locational marginal prices are less attractive when optimizing systems with large468

thermal plant having minimum operating levels and fixed costs for switching on and469

off. In the setting above, we might add a constraint and binary variables x470

qmin
i x ≤ qgi ≤ qmax

i x, x ∈ {0, 1}471

to force a particular generator to operate at 0, or in the range [qmin
i , qmax

i ], qmin
i > 0.472

Here the lack of convexity invalidates the classical welfare theorems. In practice473

most system operators in LMP markets solve mixed integer programming problems474

to determine what plant should run, and when. Marginal prices from such a dispatch475

are not always sufficient to pay for generators’ costs, and so “make-whole” payments476

are required to provide incentives for participation in the market. See [5] for a recent477

detailed discussion of the merits of such centrally dispatched systems in contrast to478

self-dispatched systems.479

Some electricity market system operators (such as New Zealand and Australia)480

solve (convex) dispatch problems formulated as linear programs. To enable this they481

require supply curves to represent minimum operating levels and start-up and shut-482

down costs in the offered “marginal” cost curve. In other words, in a single-period483

setting, a plant that is currently off might mark up the marginal cost of its offer by an484

amount that would cover the cost of switching on if it were dispatched. A plant that485

was currently operating would offer at a discount to ensure that it was not switched486

off. Such a dispatch model treats these as truthful marginal cost declarations and487

yields LMPs that reflect these. The welfare theorems of convex markets obviate the488

need for make-whole payments.489

There are two disadvantages with this approach. Unlike conventional marginal490

costs that can be calculated from fuel costs and heat rates, amortized start-up and491
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shut-down costs are difficult to estimate. For example, should a start-up cost be492

amortized over a 30 minute period or over the expected period that the unit is on?493

To avoid a shortfall, suppliers will be conservative, and so the cost of dispatch will494

generally be higher than one obtained by solving a MIP. This loss in efficiency will be495

more pronounced when there are many large thermal units that can operate in dif-496

ferent combinations. A MIP that accurately models starts and shuts can cut through497

these to yield a less expensive dispatch.498

A second disadvantage comes from the increased difficulty in monitoring the po-499

tential strategic behavior of market participants who are now freed from any imposed500

regulatory constraint to offer at short-run marginal cost. In markets that use MIPs501

to dispatch generation plant, the start-up and shut-down costs and no-load costs are502

also much harder to estimate than fuel costs, so there is admittedly a similar incentive503

for generators to mark these up above their true values without being detected.504

As electricity markets include growing amounts of intermittent generation and505

storage devices, the make-whole payments required to incentivize participation have506

been increasing (see [35]). While LMPS are currently computed using deterministic507

models, the dynamic stochastic features of markets with green energy seem to require508

a different approach to price formation to properly reward flexibility [20]. It is possible509

that the replacement of coal and gas plant by wind and solar generators will decrease510

economies of scale and lead to dispatch problems that can be well approximated by511

convex stochastic optimization problems, reducing the need for make-whole payments.512

Stochastic market clearing models have a new set of challenges, even if convexity513

can be assumed. Even in markets approximated as a two-stage stochastic program514

with a finite probability distribution the optimal solution cannot be both budget515

balanced (where the independent system operator does not lose money) and recover516

each agent’s costs (each market participant does not lose money) in every scenario (see517

[14]). It is possible under some strong assumptions on completeness of the risk market518

to ensure budget balance and cost recovery in risk-adjusted expectation which at519

least makes participation individually rational. A deeper philosophical problem with520

stochastic dispatch is an assumption that agents agree on the underling probability521

distribution used in the stochastic program. Rather than imposing a distribution,522

markets are supposed to be a mechanism for eliciting these probability distributions523

from a range of participants who each “put their money where their mouth is”.524

Stochastic market clearing models must also be dynamic, treating many trading525

periods at once, so they are stochastic optimal control problems rather than two-stage526

problems. Since the realized values of random variables in the future will inevitably527

differ from those in any model, the optimal control problems need to be updated in a528

rolling horizon fashion, as these values are discovered. Currently, a number of markets529

adopt this rolling horizon approach in a deterministic setting where single forecasts530

are updated. Such look-ahead dispatch models can yield efficient dispatch solutions,531

but can cause consistency problems in the resulting LMPs [34].532

3.5. Load forecasting. Estimating load on the electricty system is crucial for533

many, if not all, models. Load forecasting is often categorized into: 1) Short-term (one534

hour to one week), 2) Medium-term (week to a year), and 3) Long-term (longer than a535

year) settings that are appropriate for different use cases. New policy issues, disruptive536

technologies to facilitate the transition, engineering and economic enhancements that537

change usage patterns, and efforts to electrify both heating and transport lead to538

substantive changes in electric demand. In fact, the fast growth in the use of LLM’s539

across society and the world had led to huge increases in the use of computational540
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resources and consequently in energy to power them. Some see this as a principal541

limitation to the AI revolution. Such perturbations must be included in the load542

forecasts for them to be at all useful. A recent survey is provided in [53].543

A popular approach is to use a neural network approach [6] for the load forecasts.544

The paper [74] solves an optimal load dispatch model of a grid-connected community545

microgrid which contains residential power load, photovoltaic arrays, electric vehicles546

(EV), and energy storage systems (ESS), under three contrasting scheduling scenarios.547

In the load dispatch model, the residential power load and the photovoltaic power548

output were obtained from the forecasting results of a neural net model. The total549

cost of the proposed model consists of transaction costs between the microgrid and the550

main power grid, depreciation cost of EV and ESS, and treatment cost of pollutant551

emissions. Simple limit constraints specify interaction with the electrical grid.552

3.6. Emissions trading. Many countries have implemented cap-and-trade mar-553

kets for greenhouse gas emissions [3, 71]. These differ in their implementation but554

generally involve a decreasing cap on annual emissions permits that must be surren-555

dered each year by organizations to account for their emissions. The permits are556

auctioned by governments and traded in a secondary market. Given a price for a557

permit each emitter in the economy faces an optimization problem that equilibrates558

the price of permits against the marginal cost of reducing emissions.559

In practice, emissions markets are subject to political intervention. Some sectors560

of the economy (e.g. farmers whose animals emit biogenic methane) are made exempt561

(at least temporarily) from surrendering permits. The reason is that the carbon charge562

imposes a cost that they cannot avoid in the short term by technological means. Extra563

costs might make them uncompetitive in international markets. This is unsustainable564

in the long run, as biogenic emissions must be reduced. Indeed many countries are565

beginning to add emission tariffs to imported goods, which effectively imposes the566

costs on farmers that were not imposed by emissions charges in their own country567

[52].568

A second political intervention comes from the effect of emission charges on en-569

ergy prices, notably gasoline and electricity. These price increases affect poor house-570

holds disproportionately (as they spend a higher proportion of income on energy than571

wealthy households). Moreover poor households have limited access to cheap capital,572

so replacing legacy technologies such as gasoline cars and gas water heating is ex-573

pensive. This results in strong advocacy for energy subsidies or for more substantial574

income redistribution through taxation policy to enable poor households to reduce575

emissions.576

Ideally a global cap-and-trade market would result in a world carbon price that577

would reduce emissions in the most efficient way. A number of authors (see e.g. [43]578

have pointed to potential deficiencies in such a market. Lack of effective verification579

of permits can cause “carbon leakage” to less compliant countries and weakening in580

permit prices as experienced for about ten years after 2008. There are also potential581

market failures. Consider a least-cost optimal solution for the world to reach a desired582

emission target that requires a poor country to face a large fixed cost to be able to583

reduce emissions (say by building a large hydroelectric dam). A global emissions584

price might be insufficient to incentivize this. A subsidy from the rest of the world585

will enable this solution to be realized.586

There is an analogy here with make-whole payments in optimal dispatch, where587

the marginal energy price is insufficient to produce the socially optimal outcome.588

Make-whole payments incentivize participation of all generating plant in the optimal589
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dispatch solution.590

3.7. The role of storage, peaking and load shedding. The most popular591

forms of green electricity are generated by the wind and the sun. These sources are592

both intermittent and uncertain. Intermittency (the fact that the sun does not shine593

at night) and the (random) variability (due to cloud cover or other effects) can be594

treated separately [73]. In some areas solar insolation is reasonably predictable but is595

not available at night time. If the solar power exceeds demand during the day and is596

not exported then some form of energy storage might be desirable to use the power597

generated during the day in the evening and night time. This storage is intended to598

be cycled on a daily basis, and will save its operators money by reducing night-time599

power consumption that must otherwise be bought off the grid [67]. Batteries are600

typically used to perform this function if the discounted electricity cost saved over601

the battery life covers its capital cost. Batteries also can be used to transfer energy602

between time periods for other variable sources of energy such as wind power [42].603

Like any inventory, battery storage also plays a role when supply and demand are604

unpredictable [17]. Energy storage then provides a hedge against future uncertainty.605

The optimal sizing, location and operation of batteries under these circumstances606

requires a stochastic optimization model that represents the short-term uncertainty607

in supply, e.g., when predicted wind does not eventuate [77].608

An alternative approach installs fast-start peaking generators to deal with uncer-609

tain and intermittent renewable energy supply. These typically are open-cycle natural610

gas turbines, but they could be configured to run on biofuel or green methane pro-611

duced from carbon capture and hydrogen. The optimal sizing, location and operation612

of such peaking plant also requires a stochastic optimization model. Instead of in-613

stalling peaking capacity, the system might arrange for (industrial) consumers to shed614

load in response to price. This demand response essentially performs the same func-615

tion as a peaking plant. Estimating demand response for different customer types616

requires some estimate of their marginal value of electricity, which is much harder617

to determine compared with a price of natural gas. Another alternative is to use a618

battery to provide the peaking functionality [18].619

Storage can also operate over a longer time scale (see [63]). For example in some620

regions where energy supply is seasonal, hydroelectric reservoirs are used to transfer621

water from melting snow or wet season rainfall to dry seasons of the year. The water622

in these systems stores energy. In contrast to short-term battery storage that can be623

used to overcome a limitation on electricity capacity, reservoir storage is a response624

to seasonal energy limitations.625

Specific mathematical models of batteries for use in storage models can be found626

in [59], for example.627

3.8. Transmission. Electricity transmission architecture is a key component of628

the transition to green energy. Historically, transmission of electricity has been driven629

by economies of scale in generation. Electricity generation from large-scale coal and630

nuclear plant needs transmission to make it available to consumers that can be located631

many miles from generator locations. The cost of transmission lines has historically632

been low compared with the costs of proliferating small plants for local electricity633

generation. Even as these costs fall, transmission remains important since renewable634

sources of energy (e.g. offshore wind) are not always located where demand is.635

In most electricity markets, transmission is separated from energy production, and636

is owned and operated by an independent regulated monopoly. Designing transmission637

systems to achieve desirable social outcomes is nevertheless a challenging optimization638
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problem. Examples of models that study this are [48] in a deterministic setting, [72]639

in a setting with random wind and transmission switching, and [60] and [76] in a640

principal-agent setting.641

For switching problems, the economic dispatch problem can be updated to replace642

constraints (3.3) and (3.4) by643

Bij(θi − θj)−Mij(1− xij) ≤ yij ≤ Bij(θi − θj) +Mij(1− xij)644

− ȳijxij ≤ yij ≤ ȳijxij ,645

for (i, j) ∈ L, where Mij represent so-called big-M constants that facilitate the switch-646

ing on and off of a given line ij, and binary variables x represent switching decisions.647

Reconfiguration and initial design share many similar features, particularly if a648

given set of choices is specified a-priori. In this case, investment costs could be added649

to the objective:650 ∑
i∈G

ci(q
g
i ) +

∑
ij

bijxij .651

3.9. Conversion of energy. In general, it is possible to convert any form of652

energy into another target form, having different properties from the source form.653

Only 40% of the energy used in the United States is currently supplied by electricity.654

The majority of the remaining 60% of energy is supplied by directly combusting fossil655

fuels like gasoline to power cars or by burning natural gas for heat and cooking.656

3.9.1. Conversion for Storage. As mentioned above, electricity can be con-657

verted to a chemical form in a battery for example that allows for energy to be stored658

over short time periods, or water can be pumped uphill creating potential energy for659

later conversion using gravity and turbines. Such conversions are lossy, in that some660

energy is expended and lost in the conversion process. Electricity is expensive to store661

since it incurs these losses both in conversion and possibly over time due to leakage.662

Storage also requires capital and this adds to the expense. Batteries have high663

conversion efficiencies but have a high capital cost per MWh stored. A principal use664

of batteries is therefore to transfer electrical energy over short time periods, allowing665

repeated use of the battery over time to arbitrage prices so as to recover capital costs666

from high utilization. The timing of charge/discharge can be determined effectively667

using stochastic control models.668

For longer time frames of storage, batteries are not as effective since they are669

used less frequently and so cannot recover their capital costs. In this setting, there670

may be conversions of the electrical energy that are less efficient from an energy671

conversion perspective, but allow the energy to be moved across time to where it672

is much more valuable. These conversions may even be relatively inexpensive from673

a capital perspective, as they might only use excess capacity of existing/deployed674

technologies (such as ammonia generation or hydrogen to methane conversion). More675

generally, conversions could be done locally, converting generated energy into a form676

suitable for local storage and later use at that location or for more effective transport677

(e.g. methane is more easily transported in pipes with lower losses than hydrogen).678

Optimization again can be used to determine what conversions to do, where to do679

them, and at what scale.680

3.9.2. Portfolio of Storage. System optimization models can shed light on681

these conversions and which ones are effective in a given portfolio. We illustrate this682

with a toy example. Consider a set K of different storage types (say ammonia, green683
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methane, hydrogen, pumped storage, and battery), with variables for the amount of684

energy stored skt(ω) in storage type k in a scenario ω at time t = 1 . . . , T , and the685

related charging q+kt(ω) and discharging q−kt(ω) profiles. Integer variables xk determine686

how many units of k are installed. The overall cost of operation is given by:687

∑
k

ckxk + (1/T )E

(∑
ω,t

γk(q
+
kt(ω) + q−kt(ω)) + pt(ω)(q

+
kt(ω)− q−kt(ω))

)
688

where ck is the per period capital charge for storage k, γk represents the cost due to689

cycling the battery and pt(ω) is the price paid for energy at t. The system dynamics690

are modeled by:691

sk(t+1)(ω) = skt(ω) + ekq
+
kt(ω)− q−kt(ω)692

where ek is the charging efficiency, and composition of the portfolio of storage is693

determined using:694

skt(ω) ≤ Skxk695

with Sk being the size of a unit of the storage k. Residual demand rt(ω) is related to696

storage via697

rt(ω) =
∑
k

q−kt(ω)− q+kt(ω)698

This can be augmented with spill on the left hand side (that is penalized in the699

definition of cost perhaps) and the addition of a peaking plant supply on the right if700

desired. The key to such models is in the data (K,T, ck, ek,Sk, rt(ω)): we specify T as701

the number of hours in a year, and generate the demand dt(ω) uniformly at random702

(using an upper bound on the random sample in each time step generated by a seasonal703

underlying curve supplemented by daily deviations to capture the day/night cycles).704

Supply is specified so it provides an overbuild factor 1 + η more than the demand705

from generators, and residual demand is the difference of demand and supply. Other706

data are taken from estimates in the literature.707

Figure 3 shows optimal installed capacity and the number of charge/discharge708

events for three different levels (η = 0.2, 0.4, 0.6) of renewable overbuild, in a free709

disposal regime without peaking plants. Installed battery capacity has high capital710

costs so the storage capacity chosen is small. It is used primarily to deal with demand711

peaks, so the frequency of its usage is large as shown in the lower panel of Figure 3.712

At low levels of excess renewable energy supply, the portfolio of storage investment is713

biased strongly towards the more efficient storage technologies (batteries and pump714

storage) to use the excess energy most effectively to avoid shortages. As the levels of715

renewable oversupply increase, ammonia and green methane become more attractive:716

the energy wasted by these less efficient storage technologies is less costly if there717

is a large surplus of energy and is outweighed by the lower capital cost of these718

technologies. Fewer batteries are built as oversupply increases, since this reduces719

peaking requirements that are increasingly handled by (less efficient) pump storage.720

This simple model shows that a single choice of storage technology will not be721

optimal: we require a mix of storage technologies depending on the level of renewable722

overbuild. Of course the total costs of storage decrease as the amount of overbuilt723

renewable capacity increases, so there will be an optimal setting where the marginal724
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Fig. 3. Storage portfolio and charging frequency under different generation design scenarios.

cost of this equals the marginal decrease in storage cost. This is shown schematically725

in Figure 4. With an appropriate representation of the transmission network, the726

model can also be extended to determine the location of energy storage as well as its727

technology and size.728

3.9.3. Conversion for Transport. Electricity is what we call a secondary en-729

ergy source. It is created by converting primary sources of energy like fossil fuels, wind730

and solar energy, into electricity. It is a particularly useful form of energy because it731

can be quickly and efficiently transported over long distances and is readily usable in732

a multitude of settings (lighting, heat, mechanics, transport, etc). Electricity is also733
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Fig. 4. Optimizing renewable overbuild and storage

referred to as an energy carrier, which means it can be reconverted to other forms of734

energy such as mechanical energy or heat.735

Transmission of electricity over long distances incurs losses through dissipated736

heat. (These losses are reduced by increasing the voltage and decreasing the electrical737

current.) The capital cost of the transmission infrastructure and the cost of energy738

losses can be compared with alternative forms of energy transport.739

For example, consider hydrogen. One could imagine converting electricity to740

hydrogen gas at a large generation plant, transporting the hydrogen to a city, and741

then storing it and converting it back to electricity through combustion or fuel cells742

when it is needed. This enables the energy to be available at peak times. Note,743

however, that each conversion incurs a loss of energy and hydrogen is very expensive744

to transport (being light but requiring heavy pressure vessels, or susceptible to leaks745

from conventional gas pipes).746

An alternative model transports electricity to the city and makes hydrogen lo-747

cally. Electrolysers to make hydrogen can be made cheaply at very small scale, and748

require only electricity and fresh water as fuel. This means that electricity rather749

than hydrogen is transported, and hydrogen can be made and stored locally where750

the demand occurs. Such a model requires a transmission grid to be dimensioned to751

meet extra demand, but avoids the much higher costs of hydrogen transport. The752

model in subsection 3.9.2 can be easily extendded to address these issues.753

Demand for energy can change due to changes in behavoir of users. There are754

concerns about the electrification of urban transport expressed for example in [12].755

While a very high gasoline tax would yield some interesting developments, it is unclear756

how elastic the demand is, and whether such policies would lead to more working757

from home, more use of public transport and electric vehicles. For another example,758

air transportation is very energy intensive and currently not very green. Transition759

strategies are focused on sustainable aviation fuel (SAF), liquid hydrogen and electric760

power, both pure and hybrid [30]. The aggregation of transport by sea or pipeline761

instead of airlines or trucking could reduce emissions substantially, perhaps at the762

cost of longer transport times. Passenger travel via sea instead of by air might also763

involve much longer times, but at a smaller energy cost per person. Models could764

shed light on the underlying properties that are being utilized here - is the key simply765

economies of scale? Tradeoffs based on behavior change are not limited to the energy766

sector but will impact other sectors such as tourism and industrial productivity.767
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3.10. Energy/resource tradeoffs. Land is finite, and using it for energy gen-768

eration such as in solar farms, or more generally for climate renewal as in reforestation,769

precludes agricultural production or other uses. Similarly, biofuel production (corn770

for ethanol instead of feed) and dam building for new hydro generation uses land for771

energy while reducing its availability for other uses. In this context equilibrium mod-772

els are relevant, allowing a price to determine efficient allocation of scarce resources773

to a variety uses. Certainly, the tradeoff does not need to be limited to energy and774

land, but could involve other finite resources, or other environmental concerns.775

As mentioned in the introduction, many forms of green energy may involve some776

use of finite resources. Batteries involve the extraction of rare-earth materials, and777

deforestation occurs in the extraction of copper. How can our models capture these778

effects? Do we need to consider more complex life cycle models accounting for all779

inputs, for example. Or is a pricing mechanism an effective way to encourage capital780

investment in alternatives?781

More generally, energy generation and consumption is part of a broader economic782

landscape where energy and the products and services it enables are transferred be-783

tween different sectors of the economy. The effect of a change in the energy architec-784

ture will be felt in all sectors and requires a model of the whole economy to evaluate.785

Integrated Assessment Models (IAMs) of which there are many (see [55, 10]) aim to786

model these intersectoral energy flows in a system optimization framework. Alterna-787

tive approaches use computable general equilbrium models of the economy (see, e.g.,788

[75, 10]).789

4. Risk. In the classical finance literature, risk is identified with variance. In790

some settings this makes it beneficial to reduce variance through aggregation. As in791

the model of subsection 3.2, a collection of wind turbines with uncorrelated variable792

wind generation can be aggregated to give a more predictable supply, which presents793

advantages to economic dispatch models. Similarly the capital asset pricing model794

translates variance in returns into a discount rate that can be used to assess the risk795

of uncertain cash flows, so reducing variance with no change in expected reward is796

deemed to be beneficial.797

However, as noted by [50] the energy transition presents decision makers with798

risks (downside variance) and opportunities (upside variance). Ideally, optimization799

models should be able to take advantage of opportunities while minimizing risks.800

In contrast with models that minimize variance, risk-averse stochastic programming801

models using coherent risk measures [64] provide a principled approach for doing this.802

Risk in settings with many agents requires careful handling. Each agent type803

is exposed to a unique set of risks that arise from their technology choices, climate,804

fuel source, exchange rates, and regulatory intervention. Some of these risks can be805

reduced through hedge contracts signed with counterparties who see reward opportu-806

nities in the risks faced by others. We give some examples of these transactions.807

4.1. Short-term risk instruments. A popular form of hedge contract is called808

a contract for differences (CFD). Arranged at some strike price f , this is a financial809

agreement to pay a counterparty p − f where p is the observed price of electricity.810

So if party A intends to sell Q MWh to counterparty B at some future time, then Q811

CFDs arranged at f will hedge the unknown future price and conduct the transaction812

at known price f .813

Weather derivatives are also a mechanism for reducing risk. Consider distributed814

solar, and demand from air-conditioning. In the event of a very sunny day, the air815

conditioners need more energy to run and the price would rise, but solar farms are816
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producing more. A weather derivative in which the solar farm guarantees the air817

conditioner a certain amount of energy whenever the temperature (or insolation) is818

above a certain level will reduce the risk of losses of both parties.819

For a second example of weather-based derivatives consider a geothermal genera-820

tor. This has high capital costs and very low operating costs, so it make sense to run821

as a base-load plant. In the middle of the day when solar power is at a maximum,822

it might make sense for the electricity system to control geothermal output to avoid823

spilling energy. A solar farm might arrange a derivative contract with a geothermal824

plant that pays out when the sun shines, but imposes a cap on geothermal output at825

this time[36].826

Can hedge contracts remove all risk? In an uncertain environment an Arrow-827

Debreu security is a derivative contract that pays $1 to the holder if a particular828

future state of the world occurs. If these exist for every possible future state then in829

principle an agent can insure against any conceivable loss (at some ex-ante cost) by830

purchasing an appropriate Arrow-Debreu security off a counterparty.831

This highly idealized situation would never occur in practice but it is a useful832

model to study risk and contracts. A relatively recently developed theory (see [61, 56,833

23]) shows that if markets for energy are perfectly competitive and convex, and all834

agents are endowed with coherent risk measures, and the market for Arrow-Debreu835

securities is complete, then agents will trade their risk using these securities until836

no more risk can be hedged. The remaining risk is then treated by each agent as837

if they were using the risk measure of the least risk-averse agent. For example if838

some agents such as speculators were actually risk-neutral then a complete market839

for Arrow-Debreu securities will result in every agent optimizing the expectation of840

their costs and benefits (i.e., acting as neutral to risk). This theory enables one to841

establish useful welfare theorems that demonstrate that the markets deliver socially842

optimal outcomes.843

In practice, risk markets are incomplete, so the welfare theorems do not hold.844

Computational studies show that removing some risk using CFDs and other instru-845

ments can improve welfare outcomes in incomplete markets. It is also possible to find846

counterexamples where adding instruments makes welfare worse [4]. Furthermore the847

computation of equilibria in incomplete settings is difficult as these might fail to exist848

or not be unique [29]. This is an active area of research in scientific computation (see,849

e.g. [44, 37]).850

4.2. Long-term risk. The transition from a largely fossil-fueled energy system851

to a renewable system is expected to take decades. Although we can develop sophis-852

ticated planning models to guide the decisions made, these decisions will in many853

cases be made by commercial organizations in pursuit of profits, but also facing many854

uncertainties. Investment in energy production and infrastructure development is fi-855

nanced largely by borrowing, and the cost of this finance depends on the risk of the856

investment, and so organizations making investment decisions need to understand the857

risk of the investment as well as its (uncertain) reward.858

Capacity investments must make non-negative risk-adjusted returns to be justi-859

fied. In the risk-averse stochastic programming setting this amounts to a non-negative860

net present value with stochastic discount rates. In a complete market for risk, the861

trade of Arrow-Debreu securities leads companies to share the same stochastic dis-862

count rates. This allows the optimal capacity decisions for companies to be determined863

by a social planner who maximizes social NPV with the same discounting.864

In practice, as in the short-term setting, risk markets are not complete, so a social865
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planning solution might not match a risked equilibrium. The latter, however, can often866

be computed as the solution to a complementarity problem. As an example, consider867

the following equilibrium problem formulated in [14] where each generator chooses868

generating capacities and generation levels and retailers of energy choose amounts to869

buy1. Each agent a solves the problem:870

P (a) : min
(xa,za,qa)≥0.

ρa(Za)871

s.t. Za(ω) =
∑
k∈K

Kk · zak872

+
∑
t∈T

∑
k∈K

(ckt(ω)− πt(ω)) · xa
kt(ω)873

+
∑
t∈T

(πt(ω)− r) · (dat (ω)− qat (ω))874

+
∑
t∈T

v · qat (ω) ∀ω ∈ Ω,(4.1)875

xa
kt(ω) ≤ mkt(ω) · zak ∀k ∈ K, ω ∈ Ω, t ∈ T ,(4.2)876 ∑

t∈T
xa
kt(ω) ≤ nk(ω) · zak ∀k ∈ K, ω ∈ Ω(4.3)877

qat (ω) ≤ dat (ω) ∀ω ∈ Ω, t ∈ T .(4.4)878

The objective for each agent, a, is to minimize their own risk-adjusted disbenefit879

ρa(Za). Here ρa is a coherent risk measure and Za(ω) is the net cost from investing880

and operating their fleet of generation in scenario ω as defined by equation (4.1). The881

constraints contain terms for both generators and retailers and so some will not be882

present for each type of agent. The generator a produces xa
kt(ω) from plant type k and883

the retailer buys power at wholesale price πt(ω) and sells it at fixed price r. In the first884

line of equation (4.1), we have the physical capacity investment cost,
∑

k∈K Kk · zak ,885

where the sum is over investment technologies. In the second line of equation (4.1),886

we have the component of the disbenefit from generation, (c−π)x, with c giving the887

marginal cost of generation, π the spot market price, and x the output of generation.888

In the third term, we define the disbenefit from meeting demand. The per unit889

cost of meeting demand is given by π − r with the agent having to purchase the890

electricity directly from the spot market at π and given r by the consumer. The891

demand met by the retail component of the agent is given by d− q. The exogenous892

demand of each consumer is given by d, and q is how much the retail company decides893

to curtail. The overall profit is given by (π − r)(d− q).894

In the final term, we define the penalty the retail agent must pay for unmet895

demand, q. The penalty is the value of lost load, v, which is much higher than896

typically observed spot market prices. This penalty is added to the lost revenue from897

not meeting all of the consumer demand for electricity generation.898

In equations (4.2) through (4.4), we define the physical constraints on generation899

and curtailment. Equation (4.2) limits the power output x of each plant, depending900

on the capacity investment z and some multiplicative adjustment, m, that depends on901

the scenario and load block. Equation (4.3) limits the energy output of a generation902

1In [14] there is also an ISO agent that dispatches power through a transmission network. We
assume a single node model for simplicity.
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plant. Finally, equation (4.4) limits consumption to be at most the level of demand.903

To form a complementarity problem, the KKT conditions from problem P(a) for904

each agent a are added to the following market clearing conditions:905

0 ≤
∑

a∈A,k∈K

xa
kt(ω) +

∑
a∈A

qat (ω)−
∑
a∈A

dat (ω) ⊥ πt(ω) ≥ 0, ∀ω ∈ Ω, t ∈ T ,906

0 ≤
∑
a∈A

qat (ω) ⊥ r+ v − πt(ω) ≥ 0, ∀ω ∈ Ω, t ∈ T .907

These complementarity conditions ensure that supply meets demand at a competitive908

price. We have free disposal of power within our model, allowing supply to exceed909

demand at each node. However, when this occurs, the spot market price for electricity910

at this node will be 0. And when some positive amount of load is shed then the price911

hits its maximum value r+v. As mentioned above, the incompleteness of the market912

for trading risk complicates the existence, uniqueness and computation of equilibrium913

in these models, but in many practical instances equilibria exist and can be computed914

(see [47] and [4]).915

As alluded to by [50], long-term investment decisions should maximize opportu-916

nity while controlling risk. Stochastic programming models that represent such real917

options are multistage, since opportunities are revealed over time as random variables918

are realized. Multistage risk-averse optimization has many variations depending on919

the form of conditional risk measure used. We mention two.920

Given an adapted set of actions at each node of a scenario tree, an end-of-horizon921

risk measure sums the payoffs at each node along a path from root to leaf to give a922

scenario payoff. The risk of the set of actions is then evaluated using a coherent risk923

measure applied to this distribution of scenario payoffs. This is the predominant risk924

measure used in software for solving multistage models of capacity expansion under925

uncertainty (see, e.g., [19]).926

Given an adapted set of actions at each node of a scenario tree, a nested risk927

measure computes the risk-adjusted payoff at the parent of each leaf node, using the928

payoffs at this node and its children. This risked “value-to-go” function is then used929

to evaluate the risk-adjusted payoff of the set of decisions at the grandparent of each930

leaf in a recursive pattern. This recursive definition ensures that the dynamic risk931

measure is time-consistent.932

Dynamic risked equilibrium (see [23]) of many agents can be viewed as an open-933

loop problem or a closed-loop problem. In the former setting, agents choose every934

action in every state of the world on day 1, assuming other agents have fixed theirs.935

The response of an agent is then computed in response to this knowledge. Such an936

equilibrium is not subgame perfect. In a closed-loop equilibrium, an equilibrium is937

computed for every state of the world at the final time. The payoffs in this equi-938

librium then inform actions at the penultimate time, and the solution is computed939

recursively. As shown in [23], these two solution concepts yield the same result in940

perfectly competitive convex markets with complete risk markets. In imperfect or941

incomplete markets they are not the same. Developing computational methods for942

these problems is an active area of research (see [65]).943

Why are these models important? Much effort has been devoted to developing in-944

tegrated assessment models (IAMs) for understanding the transition to green energy.945

These models are (often deterministic) social planning models with high levels of phys-946

ical fidelity, but treating the future as predictable scenarios. Including uncertainty947

and risk aversion in these models makes them more realistic, but the results need948
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to be reconciled with commercial investment decisions of competing agents. Welfare949

theorems give some justification for using risk-averse IAMs as gold-standard bench-950

marks for the dynamic risked equilibria in incomplete markets that we believe are951

closer representations to what will actually occur.952

4.3. Architecture for resilience. Unexpected outages (that can arise from953

operator mistakes, major storms or environmental disturbances, or even deliberate954

sabotage by adversarial actors) are a general concern in electrical energy systems.955

However, the more distributed nature of green energy systems may allow some en-956

hancements, whereby cascading failures can be avoided by isolating subnetworks of957

the overall grid. Since more batteries or other storage devices are installed (to provide958

transfer of energy over time), those same resources could be made available (along with959

existing distributed generation) to facilitate balancing while isolated. This is a novel960

use of additional functionality installed in the system to improve overall resilience.961

In any disaggregated system, the need arises for additional information to facili-962

tiate better overall control and stability. There is a large existing literature in the963

energy domain related to information, privacy and mechanism design (for markets,964

auctions, etc). The underlying question regarding the much finer scales of disaggrega-965

tion that might come about in a green energy system brings up questions as to whether966

these existing mechanisms are sufficient in these new operating environments, or what967

changes and enhancements are needed.968

4.4. Capacity markets. The transition to green energy will be costly. Accord-969

ing to the International Energy Agency over 60% of the world’s electricity in 2021970

was generated from fossil fuels. Given that total electricity generation will increase971

from electrification of transport and industrial processes, the scale of the investment972

in green electricity capacity is immense.973

This raises several important questions. What incentive structures are needed974

to ensure that the right mix of capacity is built? Is the dynamic risked equilibrium975

that emerges from commercial decisions enough to give the capacity increases that we976

need? Finally, will this equilibrium be achieved in time to avert a climate catastrophe?977

The first question is an area of active research. As mentioned in subsection 3.4978

locational marginal prices (LMPs) are not always sufficient to incentivize optimal par-979

ticipant behavior. In perfectly competitive, convex energy-only markets LMPs provide980

economic rents that support optimal levels of investment at the margin determined981

by a screening-curve analysis [68] as depicted in Figure 5.982

The screening curve shows the annual total cost per MW capacity plotted against983

the number of annual operating hours. The total cost is a combination of fixed and984

variable cost based on the number of production hours in a year. A minimum cost985

for each capacity factor can be found by combining the screening curve with the load986

duration curve (LDC), here approximated by 10 load blocks with piecewise constant987

demand. The projection produces the least-cost capacity combination that can serve988

the load profile. For example, to supply the part of the LDC that has higher capacity989

factor (i.e., running most of the year), base load is the least cost option. As the990

number of operating hours decreases, the plants that are less expensive to build but991

more costly to run begin to become more economical. For a small number of hours992

at the tip of the duration curve, high variable cost peakers are the most economical.993

This picture is complicated by intermittent generation sources that are not dis-994

patchable, and by risk aversion that affects the equilibrium as discussed in the previous995

section. And even in the simple deterministic case, energy prices might need to be996

very high on occasions to sustain the peaking investment needed to make the system997
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Fig. 5. The screening curve: how capacity is traditionally planned in electricity systems.

avoid shedding load. For example if load shedding is acceptable in at most four or five998

hours per year, then prices need to become very high to pay for the annual capital cost999

of a peaking plant that runs only during these periods. The uncertainty of receiving1000

these cash flows every year makes such an investment too risky.1001

Contracts between energy suppliers can resolve some of the risks faced by gener-1002

ators in deciding capacity investments. For example, a hydroelectric generator could1003

arrange a two-way option contract with a coal plant to keep the coal plant available1004

for periods of low reservoir inflows. The hydroelectric generator buys a call option1005

off the coal plant, and the coal plant buys a put option (at a lower strike price) from1006

the hydro generator. These contracts (that can be arranged to have the same price)1007

enable the coal plant to receive revenue even when wholesale prices are below its1008

marginal cost of generation in return for some loss of revenue in peak periods.1009

Capacity markets that arrange additional payments for committed generation1010

capacity ahead of time are a popular mechanism intended to overcome these problems.1011

Opinions differ on the effectiveness of these mechanisms in comparison with energy-1012

only markets, and studying their design and operation is an active area of research.1013

In dealing with the transition to green energy, capacity markets serve to answer1014

the second question as they can procure the desired capacity of different energy tech-1015

nologies at auction. So governments can decide to increase this as needed to meet1016

demand growth. It is not clear whether the same outcome might be achieved at lower1017
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cost with an energy-only solution.1018

The final question of timing is important. A green-energy risked equilibrium must1019

be viewed over a long time scale and achieve a green energy system in time to avert1020

a climate catastrophe. Dynamic equilibrium models might give some confidence that1021

commercial investment will deliver in time, but betting the planet’s future on this1022

might be too risky for policy makers. As evidence of climate change becomes more1023

obvious, generational shifts in voter preferences might lead to more direct government1024

intervention in planning and implementing the transition. In this case, relying on com-1025

petitive electricity markets to achieve the transition might be viewed by governments1026

as too much of a risk.1027

5. Conclusions. In this paper we have outlined some of the questions arising1028

in the transition to green energy, and presented some mathematical approaches to1029

address them. The models we discuss are formulations of optimization problems1030

and related complementarity problems, in settings with a variety of physical scales,1031

and dealing with different time scales. The costs of the physical and institutional1032

architecture required to bring about the transition will be substantial and will involve1033

risk. Mathematical models will be essential in understanding the complex tradeoffs1034

that have to be made in planning and incentivizing the transition to enable it to occur1035

at a low cost and in time to avoid global temperatures rising to unacceptable levels.1036
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Anadon, J. D. Farmer, and T. M. Lenton, Economic modelling fit for the de-1051
mands of energy decision makers, Nature Energy, (2024), https://doi.org/10.1038/1052
s41560-024-01452-7.1053

[8] D. Bertsekas and S. Shreve, Stochastic optimal control: the discrete-time case, vol. 5, Athena1054
Scientific, 1996.1055

[9] D. Bertsimas and M. Sim, The price of robustness, Operations Research, 52 (2004), pp. 35–53.1056
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