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THE ARCHITECTURE OF GREEN ENERGY SYSTEMS*

MICHAEL C. FERRIST AND ANDY PHILPOTT #

Abstract. Energy production throughout the world is transitioning from fossil fuels to renewable
sources such as wind power and solar power. This transition has been gradual - over half of the world’s
electricity is still produced by coal, oil and gas - but must accelerate to meet global emission targets.
This paper examines the contributions that mathematical modeling can make to help accelerate this
transition. The models we catalog are confined to optimization and equilibrium models, but cover
a range of physical scales and time scales. Our focus is on novel model formulations that can help
overcome the challenges of the transition by unpicking the complexity inherent in many settings and
quantifying the tradeoffs that must be made when developing energy policy.
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1. Introduction. The world is undergoing a transition from using fossil-fuel
energy that emits greenhouse gases (mainly carbon dioxide) to using energy that
does not. This transition is a global response to calls to limit global warming that
has been caused by the emission of greenhouse gases over the post-industrial era.
The current scale and speed of this transition appears insufficient to keep global
temperatures below agreed targets. There are many technical, economic, social and
political reasons for this slowness that have been canvased in a number of recent
reports (see e.g., [1, 2, 7]).

Our purpose in this paper is to examine the contribution that mathematics and
mathematical models can make to understanding and overcoming the barriers that
are faced in the transition. Those barriers include affordability, reliability, industrial
competitiveness, and trusted information. The contribution of the paper is primarily
to present mathematics; it is not intended to be a survey of existing energy models,
of which there are many (see, e.g., [55, 21]).

In particular we will focus on what we call the architecture of energy systems,
which consists not only of the physical infrastructure for generating and transporting
energy, but also the market and contractual arrangements that give incentives for
investing in this infrastructure and that allow for it to be operated in an efficient
manner. Our aim is not so much to deliver the correct answer or define an optimal
solution, but rather to pose questions that can benefit from a mathematical modeling
approach. Many of our approaches incorporate techniques to promote flexibility [15],
including multiple types of dispatchable generation, demand response, energy storage
and enhanced connectivity.

We are interested in the architecture of systems that generate mainly green energy,
a catch-all term that encompasses renewable energy from sources that are constantly
and naturally renewed such as hydroelectric power, wind power and solar power,
and energy from other sources with negligible carbon emissions (such as nuclear and
geothermal electricity), or net-zero emissions (such as biofuels). Such systems will be
an essential part of the transition, along with new technologies that fill gaps in our
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2 M. C. FERRIS, AND A. PHILPOTT

operating landscape.

Our use of the adjective green in this context might be viewed by some as con-
tentious, as some activities associated with green energy production (such as building
hydroelectric dams or mining lithium) can damage the natural environment. As we
discuss later in the paper, some of this damage might be justifiable when traded off
against the damage avoided by reducing carbon emissions, so it would be unwise to
preclude such activities from the mix of green energy we study.

Designing the green energy system of the future is a global problem involving
interactions between countries across the world and requiring long term investments,
changes of operational procedures, trade-offs and innovations. While internationally
coordinated efforts are likely to be the most effective and economical, this is hampered
by political discord, disparate goals and perspectives on the severity of the issue, and
different ideas on the best course of action to transition into a green energy system.
Even within countries, different agents view the risk of inaction, or incorrect actions,
in contrasting ways, and will make decisions in their own interests in response to
incentives and regulations.

The challenge then lies mainly in designing appropriate incentives and regulations,
so agents with different attitudes to risk align their actions with the objective of global
emissions reduction. Our approach in this paper is to look at tools that capture the
risk in each agents problems, suggest models and approaches to invest in a portfolio
of technologies that may reduce the variability in outcomes and enhance the ability to
finance their adoption, whilst quantifying the differences between these agent-driven
results and one that might arise with a system-wide perspective.

A green energy system can be viewed along three orthogonal dimensions. We
show two of these in Figure 1.

Time scale
Nuclear investments
20 years Wind investment Mineral extraction
Battery/solar investment International trade
Decade PEV growth Transmission upgrades
Hyd ir st
Year ydro reservoir storage
Month Gas/ammonia/H2 storage
Week
Pump storage
Day Battery operation
Hour . ISO economic dispatch
Household operation
Supply during peaks/outages

Physical scale

Fic. 1. The energy transition in two dimensions

In one dimension one can vary the physical scale of the system. At the smallest
scale, one might consider a household with solar panels, a battery and a plug-in elec-
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GREEN ENERGY SYSTEMS 3

tric vehicle. This could form part of a micro grid, which in turn connects to a larger
system with industrial electricity supply and demand. High voltage electricity trans-
mission lines link these together into an electricity network, that may be connected
to neighbouring networks by transfers along tie lines. The system might transport
energy from place to place using other carriers such as hydrogen, ammonia, natural
gas, oil, coal or uranium. Transfers of energy are accompanied by financial flows,
and derivative instruments that derive their value from these transactions. At the
largest (global) scale the energy and financial flows are between different regions and
economies; the design and operation of new forms of contracts and financial flows are
critical to enabling the transition process.

The overall system is a collection of technologies at different physical scales, con-
nected through a network that might be electrical or some other energy transport. To
answer questions about the architecture of this system, or the design and operation
of a component, one can consider a particular scale, in which case the interplay with
larger (or smaller) scales needs to determine boundary interactions. Such boundary
interactions may be physical, financial, regulatory or involve some form of incentives.

The second important dimension to consider is time, and implicitly the evolution
of uncertainties over varying time scales. Energy is produced and consumed continu-
ously, but questions about the architecture of energy systems are posed with different
temporal resolution. Also, information flows are often uncertain, and are resolved at
a variety of time scales. Predicting new technologies or policy changes, or the increase
in electrical demand due to transitions in domestic heating or transport, or the in-
stallation and closing of different generation plants can involve complex models and
forecasts and these can evolve over time within a physical or computational learning
process. Dealing with uncertainty in forecasts requires models of some sophistication.
In the short term, the intermittency of solar and wind power requires backup sup-
ply in the form of fast-start generation, load reduction or batteries, so that supply is
reliable. On a longer time scale, energy might need to be stored (e.g., in a hydro reser-
voir) for use in future months when the supply of other sources of energy are lower.
The aforementioned issues relate to parametric uncertainties - things we know the
form of but are unclear about their actual levels. In contrast, model (or structural)
uncertainty arises in problems that involve long-lived capacity choices and need to
account for many possible states of the world (e.g., emission constraints, technology
changes, political environment) in future decades.

The third important dimension represents social and political or behavioral as-
pects. These can involve interplay with other (political) institutions, agencies (coun-
tries or adversaries) or policies and information. While we discuss models of behavior
related to (mathematical) game theory, this paper does not address social/political
factors or their evolution. Nonetheless, it is understood that interactions of these
types can affect the efficiency of designed systems and how local or national behavior
influences the outcomes of a given architecture.

The paper examines a number of policy questions arising in the green energy
transition that can be viewed in the above three dimensions. Despite the enthusiasm of
advocates for silver bullet solutions to the green-energy transition, the policy questions
that arise are complex and do not admit simple intuitive solutions. Our interest in
this paper is in formulating these questions in mathematical terms with a view to
representing the complexity of the tradeoffs involved. Problem formats that model
interactions, and determine what regimes are active at any given time are important
in understanding overall structure of solutions, even if specific details are abstracted
or approximated.
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4 M. C. FERRIS, AND A. PHILPOTT

Our mathematical framework draws on two core methodologies: optimization
and game theory. Optimization is a powerful tool for exploring the tradeoffs that
are inevitable when comparing competing technologies. For example, it is tempting
to remove all fossil-fuelled electricity capacity from a region to make its electricity
100% renewable, but this might be very expensive compared with a system with 1%
of fossil-fuelled generation capacity that is used sparingly (see, e.g. [25]). System
optimization models make these tradeoffs explicit, and enable decision makers to
arrive at optimal combinations of technologies that will meet desired emission goals
at least cost. For models involving time and uncertainty, the optimization models
become more complicated, and must deal with estimates of probability distributions
and attitudes to risk.

The second methodology guiding our approach is game theory. The transition to
green energy emerging in most countries is driven by competing commercial agents,
responding to incentives and regulations set by governments. In its simplest form, this
setup is known by economists as a principal-agent problem [31], in which a leader takes
some action and a number of followers respond by optimizing their own objectives in
a competitive environment. There are many different versions of this simple game
model that arise from varying assumptions on the degree of strategic behavior of
agents and the knowledge that each agent has at their disposal. The models can
capture features such as barriers to entry, collaboration or contrasting risk attitudes.

In summary, the mathematical study of the architecture of green energy systems
involves suites of models encompassing different resolutions in each dimension. The
models can be optimized to determine some social plan of action that maximizes
overall welfare subject to constraints, e.g., on emissions. This gives a gold-standard
benchmark for more realistic policies that will attempt to achieve results through
incentives (e.g., carbon taxes) and regulations (e.g., renewable energy standards).
The extent to which the outcomes of these policies fall short of the gold-standard
benchmark can be evaluated by game-theory models.

The paper is laid out as follows. In the next section we classify in mathematical
terms the types of optimization and equilibrium models that will be applied to the
various settings we study. Section 3 then describes a collection of example problems
that can be studied using a selection of models cataloged in Section 2. Section 4 is
devoted to a discussion of risk, and how one might devise models that represent the
partial equilibrium that emerges when agents have contrasting risk measures. We
then make some concluding remarks in Section 5.

2. Mathematical Models. While there are many mathematical constructs that
could influence the choice of architecture, we will confine ourselves in this paper to
discussing approaches that are based in the field of optimization, and specifically to
approaches that utilize constraints to model the underlying physical nature of the
problems at hand. It is understood that any such model needs to be populated
with data that instantiates these mathematical relationships. Different data will be
relevant for models at disparate scales, but we will not cover the acquisition details
of this. Nevertheless, we will consider the uncertain nature of these data and suggest
models that account for this uncertainty using stochastic optimization approaches. In
this section, we briefly outline the main formats that we will use in the sequel.

2.1. Optimization models. Our models will consider decision variables x that
live in a finite dimensional space R™. These variables are constrained to lie in a subset
X of R™ and are used to define an objective function f that maps R™ to the real line,
and a vector valued function g that is constrained to lie in some cone K, resulting in
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GREEN ENERGY SYSTEMS 5

the optimization problem

(2.1) min f(x) s.t. g(x) € K.
Special cases of the data of this problem lead to formats under consideration, namely:
1. if f is a linear function, and g is an affine function, X is polyhedral (possibly
R™) and K = {0} x R™, then (2.1) is a linear program (LP)
2. if in addition X C Z"' x R" (i.e. some of the variables can only take on
discrete values), then (2.1) is a mixed integer program (MIP)
3. K can model both equations and inequalities or a mixture of both (as shown
item 1 above)
4. if f and g are convex functions of x then (2.1) is a convex optimization
problem
5. if £ is a random variable defined on a probability space (2, F,P), and f(z) =
c(x) + Ep[Q(x, £] where Q(x, &) is the optimal value of the second-stage prob-
lem

ming(y, &) s.t. T(€)a + Wy = h(¢)

then (2.1) is a two-stage stochastic programming problem
6. if in addition X = {x > 0: Az = b}, c(z) = cT'z and q(y, &) = q(&)Ty, then
the problem is a two stage stochastic linear programming problem.

The formulation of the above two-stage problem assumes that the second-stage
data & is modeled as a random vector with a known probability distribution. In many
applications the expectation E can be replaced by a more general risk measure p.

The two-stage stochastic programming problem can be extended to a multistage
stochastic programming problem, in which decisions are made in many stages t =
1,2,...,T and the random variables define a stochastic process &,t = 1,2,...,T.
After each stage t the values of & are realized, and adaptive decisions made in the
light of this information. Such problems are useful in studying investment problems
over long time horizons when new information might require existing capacity to be
retired or replaced.

A useful special case of multistage stochastic programming is the discrete-time
stochastic optimal control problem. Here the random variables &; at each stage t are
assumed to be independent of those at previous and later stages, and the decision
variables divide into states x and controls u. This gives constraints:

zt+1:gt(xt,ut,§t), utEUt, t:1,2,,T*1

and objective

T
f(fU) = E[Z ft(fl?t, Utaﬁt)]-

In this case the problem has a finite horizon; infinite-horizon versions replace the sum
in the objective with a discounted infinite series. Stochastic optimal control problems
are amenable to solution by (approximate) dynamic programming [8, 58].

It is important here to be specific about the nature of the uncertainty in the
above models. In most stochastic optimization problems, the random variables are
assumed to have known distributions that can be estimated from a sample of historical
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6 M. C. FERRIS, AND A. PHILPOTT

data. A popular approach is to solve a sample average approximation problem using
the finite empirical distribution [64]. Convergence of this approach with increasing
sample size relies on laws of large numbers and the central limit theorem, which
may not hold for heavy-tailed distributions. For stochastic optimization problems
involving planning decisions made many years in the future, probabilities (e.g., of a
new technology emerging) are impossible to estimate from historical data, and some
expert assessment must be made and tested. As identified by Mercure et al [50], risks
and opportunities in these settings are more important to identify than net present
values based on discounted expected cash flow. A real-options [13] approach has some
appeal here though this is difficult to apply in system settings where there are many
competing and complementary investment options, and limited hedging instruments.
An alternative approach is outlined in [62].

Risk-averse stochastic programming problems formulated in scenario trees provide
another alternative framework that models upside optionality as well as downside risk.
Binary variables in these models can represent timing decisions, e.g. when to build
or shut down generating plants, albeit with an increase in computational complexity.
It is important to recognize that these models are look-ahead optimization models
[57], with the goal of specifying a well-hedged first-stage decision. The intention
after the first stage decision is implemented, is to re-solve a new model in a rolling-
horizon fashion with updated estimates of parameters. How far to look ahead, how to
appropriately approximate the future, and how to implement the solutions in practice
are all interesting research questions, with answers that can generally only be settled
by numerical experiments with context-specific models.

Finally in some settings one might seek a solution that performs well over a set
of varying problem data. Robust optimization provides a numerically efficient way of
doing this by specifying a convex uncertainty set U that defines the data variations
(see [9]). For example, when the constraint data are uncertain we obtain:

(2.2) min f(z) s.t. 2 € X(u), uwel.

This notion can be extended to compute a distributionally robust solution to a sto-
chastic optimization problem that performs well for every probability distribution
lying in a set P. An example formulation would be as follows.

(2.3) min max Bp[f (2, &)

2.2. Complementarity models. A complementarity problem is a generaliza-
tion of the optimality conditions of (2.1). In this setting we seek a variable z such
that

r€ X, F(x)e X*,2TF(z) =0

where F' : R™ — R", X is now a cone (in many settings the positive orthant in
R") and X* is the dual cone X* := {w : 27w > 0,¥z € X}. The third constraint
indicates that  and w = F(x) form a complementary pair and is often written as
x | w. The complementary slackness conditions of linear programming are a special
case of a complementarity problem. While there are many examples of the use of
complementarity formulations in engineering and economics (see [24, 27]), one par-
ticular modeling use allows the formulation to automatically switch between regimes
of operation. For example, in [16] complementarity constraints are used to model
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GREEN ENERGY SYSTEMS 7

automatic tap-changing transformers and other switched electrical devices. Given the
following constraints,

v:T)—i—UJr—v*,
0<(qg—q™) Lot >0,
0< ("™ —q) Lv™ >0,

it is easy to see that v is at set point ¥ when q is strictly between ¢™™ and ¢™°*,
whereas if ¢ is at one of its bounds, then v is allowed to move away from the set point
value.

A generalization of the complementarity problem is a variational inequality, where

z€ X and F(z)T(z —z) >0, for all z € X.

This is sometimes termed a generalized equation, since in the special case of X = R"
it simplifies to the solution of a square nonlinear system F'(x) = 0. It is also clear that
when X is a cone, this is identical to the (cone) complementarity problem. When X
is a convex set (not necessarily a cone), then the optimality conditions of

min f(z)

are in the form of a variational inequality:
re€ X and Vf(z)"(z —2) >0, Vz € X,

which are necessary and sufficient for optimality under a convexity assumption. For
the optimality conditions of (2.1), where the constraints g(z) € K have a particular
representation, Lagrange multipliers can be introduced and the variational inequality
are the so-called KKT-conditions. In this setting, a constraint qualification may be
needed to prove equivalence to the optimization. The motivation to call this problem
format an equilbrium problem arises from the consideration of the variational form of
the Signorini problem [24]. Specialized techniques for solution are given in [45], for
example.

A bilevel program is an example of a hierarchical optimization where a paramet-
ric version of (2.1), the so-called lower level (follower) problem, is embedded in the
constraint set of an upper level (leader) case of (2.1). Formally,

(2.4) min _ fu(z,y) s.t. gu(z,y) € Ky,y € SOLL(z)
(z,y)eX

where

SOLL(x) := argm'}I}fL(x,z) s.t. gr(z,2) € K.
zE
In other settings, SOL;, might consist of the optimal solutions of several linked
optimization problems as in a non-cooperative game. Here the lower level problem
y € SOL (x) can be replaced by a set valued inclusion (x,y) € SOL, that represents
a more general parametric equilibrium:

(2.5) (gcrzl)igX fu(z,y) st. gu(z,y) € Ky, (z,y) € SOLL
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8 M. C. FERRIS, AND A. PHILPOTT

For example, there may be many followers fr(i), ¢ € I, where given the leader’s
policy choice x, the followers’ actions are assumed to be chosen to give a Nash equi-
librium, that is, no unilateral improvement for any follower. The leader seeks a policy
that maximizes overall welfare. The mathematical formulation (2.5) of this problem
is called a Mathematical Program with Equilibrium Constraints or MPEC. In fact,
Mathematical Program with Equilibrium Constraints can encompass bilevel programs
where the lower level parametric optimization problem is replaced by its variational
form, thus

(mrzl)lgx fU(x7y) s.t. gU(may) € KU7y € }/7 Vny(xvy)T(Z - y) >0, VzeY

where for notational ease we have simplified the lower level problem to

(2.6) min fr(z, 2).
Assumptions are needed to guarantee that the variational form is necessary and suf-
ficient for optimality in (2.6).

The principal-agent problem is an instance of the bilevel programming problem.
In this case, the leader is the principal (owner) and the agent (manager) is the follower.
The agent’s actions y = a are chosen to optimize their expected utility V4 (w, a) given
that the principal sets a reward x = w. The principal optimizes their expected
utility Vp(w, a). Note that the agent only accepts the contract if V4 (w,a) > v, so a
participation constraint is added to the upper level problem. The bilevel form is thus:

(2.7) max  Vp(w,a) s.t. Va(w,a) > vy, a € argmax Va(w, z).
(w,a)eX z€Y

The last constraint in this model ensures that the chosen action is also the agent’s
best response. It is of course possible to convert this to an MPEC under assumptions
that guarantee the lower level optimization can be replaced by its variational form.

2.3. Forecasting models. There is an enormous literature on forecasting that
utilizes methodologies such as deep neural nets, statistical learning [40] and data
analytics. In this paper we assume such methods are used to generate forecasts that
can be used for data provision in our models, but do not describe them further since
their black-box nature makes it difficult to interpret results and understand the model
constructs generated. Some references can be found in the following survey papers
[38, 70].

3. Examples. In this section we look at examples of problems arising in the ar-
chitecture of green energy systems that can be modeled using the approaches outlined
in section 2. Our catalog of examples is loosely ordered by their scale, from the small
to the large. Furthermore, the models are broadly conditioned on looking at issues
of flexibility in planning, ensuring the problems determine decisions on technologies
and capacities that are informed by operational characteristics of the desired energy
system.

3.1. Household electricity planning. The simplest agent engaged in the tran-
sition to green energy is the individual person or household. They make decisions on
the level and type of energy consumption for heating, refrigeration, cleaning, enter-
tainment, and transport. Households might choose to use a combination of rooftop
solar energy, batteries and electric vehicles to meet their needs. If they are exposed to
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GREEN ENERGY SYSTEMS 9

carbon charges and time-varying electricity prices, then they face a capacity planning
problem that chooses the capacity of solar panels, battery and car battery, and an
operating policy of electricity consumption and battery charging/discharging to meet
expected energy needs. This is a two-stage stochastic program in which the first stage
defines capacity choices and the second stage is an infinite-horizon stochastic optimal
control problem that defines the operating policy.

min K(z)+V

2,X,U

st. V= ]E[Z B fi(we, ue, &),

t=0
z€Z, x€X(2,8), u €U(zE).

Note that the constraint set Z can encode many complicated engineering relationships
involving the investments z. The state variable x; represents storage and the control
u; represents charge and discharge of storage as well as electricity purchases and load
shedding. The set U(z, §) represents both household demand for electricity and supply
of power from investments z. The operating costs fi(x¢, us, &) are discounted with
discount factor 8. Details and data for the capital, operating and lost load costs
and the demand profile are not specified here, but represent samples for different
operational cases. Of course, many households make investment decisions in solar
panels and batteries without this sort of analysis as they are typically not exposed to
varying electricity price and the household savings from optimal operations are too
small to warrant the solution of a complicated optimization model.

While much of the energy management can be carried out “behind the meter”,
agents might interact directly with the electricity market whenever they have a deficit
or excess of power. Choices between purchase or load reduction (turning off appli-
ances) can be price directed. Some companies install solar panel systems with built
in controls that promise guaranteed electricity savings over a fixed time horizon, ob-
viating the need for households to optimize individually. Such disaggregated control
has some drawbacks as potential system stability problems may ensue if appliances
of many agents respond simultaneously to a single price signal without some coordi-
nation.

3.2. Aggregators and micro grids. Solar generation falls into two categories,
residential (often called roof-top) and utility-scale (often called solar farms). Deter-
mining the sizing of these farms is an optimization problem. Is it better to have a
large single facility or a distributed collection of smaller ones? The answer will de-
pend on land availability, and issues relating to the connection of this supply to the
electrical grid.

Aggregators combine household demand and solar generation into a single energy
source. This allows an aggregator to act as a virtual power plant and provide promises
to deliver at least a certain amount of power/energy in a given time frame. Individ-
ual households typically cannot make such strong promises due to variability in the
amount they can supply. Aggregation can reduce that variability, a property that
is utilized to give diversified investments in the financial industry. Additionally, an
aggregator can handle issues such as construction delays (a solar farm takes anywhere
from 6 to 12 months to build), local and municipal permitting and approval processes,
and ongoing maintenance and operation concerns [11]. The main concerns here are
electrical engineering issues (and possible legality) related to distributed injection of
supply, such as voltage support and frequency regulation. Questions arise around the
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[ Wholesale market }
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F1G. 2. Aggregator as intermediary between prosumer and electricity market: based on [28]

regulatory policy (see, e.g., [22]) vis-a-vis the size of the aggregate supplier, and also
to whether innovations such as digital transformers can provide alternative technical
solutions [51]).

A schematic showing the typical operation of an aggregator system is shown in
Figure 2.

Operational models for aggregators can vary. In [39], aggregators are the inter-
mediaries between a collection of prosumers (the combination of a producer and a
consumer) and the electricity market, whereas in [54] a different approach is taken
where consumers are aggregated in a demand response setting. The aggregator’s de-
sign problem is to select from a collection of distributed solar energy sources those
that in aggregate will generate a certain volume of energy with the smallest variation
in output (essentially the Markowitz model [49] in finance). We consider a design
where solar energy sources are aggregated and augmented with batteries to smooth
short-time fluctuations. If we let Q) represent the matrix of covariances in energy
output of solar sources, r be the vector of expected energy outputs, and « = (z;) be
a binary variable that includes source ¢ or not, we solve

: T T
min ¢ x4+ p(x’ Q)

st. rTz>d.

X captures other constraints on x, and the objective adds the cost of solar installation
to the cost ¢(-) of batteries to deal with the overall variation in supply. The constraint
then ensures average power output is above a threshold for interactions with the
electricity grid.

In the context of distributed green energy systems, one concern is whether it is
better to design the system for local use (i.e. use rooftop solar to power residential
air conditioners directly behind the meter) and store excess locally in some form for
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GREEN ENERGY SYSTEMS 11

later use (disaggregated storage), or is it better to directly deliver the excess to the
electricity market, or have an aggregator manage the (excess) supply? These choices
are compounded by supply intermittency when the local user has a deficit of energy
and needs to procure it from elsewhere. The choice of storage mechanism is part of
the design, and requires understanding the usage pattern - short or long time storage,
power or energy requirements. In another section we touch on other aspects of storage
or aggregated control related to reliability guarantees of the overall system.

Direct interaction with the market by a prosumer can be modeled as a special
case of the aggregator problem. Interactions with the electricity market are governed
by standard mechanisms described in section 3.4. The remaining design decisions
relate to the pricing of energy flows between the prosumer and the aggregator, and
the mechanism to control the prosumer demand. For example, the aggregator can
rent the consumer’s roof at a fixed price, install its own solar panels, and then control
the energy flows as part of a (large) virtual prosumer. An issue for the aggregator
is to determine what roof space to rent and at what price (connection charge and
per unit cost or payment), a so-called two-part pricing model. These models form a
contract between the prosumer and the aggregator and such contracts can take on
many forms. A rental contract could pay a fixed amount per month, or might provide
retail power to the household at a reduced rate. The latter contract must specify how
the price is indexed to the price of energy, and there is a need to understand how long
term increases in demand will be treated, a topic that is well-understood by electricity
retailers. Four different models of how to integrate distributed energy resources (DER)
into electricity markets are given in [28]. They all rely on following a participant two-
part pricing model (connection charge and selling price of the aggregator), but differ
in the regulations that the aggregator faces.

Aggregation is also possible for plug-in electric vehicles that are currently con-
trolled by their owners. Imagine a world where a fleet is owned and controlled by
a corporation and cars are available on demand for a particular trip. This enables
the corporation to control charging and vehicle use using a similar model to those
outlined above.

3.3. Distribution network architecture. Distribution companies operate the
low voltage networks that distribute electricity from the high voltage transmission
grid to consumers. These operations are subject to variability from local demand
and generation but also from equipment failure. Distribution companies can install
special devices and configure the topology of the network to make it resilient to this
variability. Dynamic topology control that switches lines in and out of the network
also provides flexibility [26, 32, 33, 46]. For example, a mesh design (that provides
redundancy in the form of multiple connection paths) can be configured as a radial
network, allowing failures to be accurately identified and isolated. Lines (including
those that are switched out) can be reinforced to reconnect the distribution service
in case of failure (see for example [66]). In addition to these actions, the distribution
company can procure flexibility services from battery storage or interruptible load. In
a green energy system that has distributed battery capacity, these could be utilized for
short term supply during a reconfiguration process. The type and amount of services
to be procured depends on their offered cost, the existing flexibility actions available
to the distribution company, and the level of reliability they require.
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3.4. Electricity system operations. The economic dispatch model consists of
buses B, lines £ and generators G C B in an optimization:

(3.1) min > eilqf)

(g,0,y)€X vt
(32) S.t. qu — q,ii = Z Yij — Z Yjis 1€ B
jet(7) JEG(3)

(3.3) B;j(0; — 6;) = yij, (i,j)e L
(3.4) — Uij < Yij < Yijs (i,j) e L

q:nzn S Qf S qzmaz, ie g
where 67(i) = {j € B : (i,j) € L}, 67 (i) = {j € B : (j,i) € L} specify the
network structure, B;j, ¢;""""""", y;; are electrical properties and ¢; are production

cost functions (most often linear or quadratic), and ¢¢ is demand, see for example
[69]. Variables determine active generated power ¢7, voltage phase angles 6§ and
active power flows y. Extensions of this basic problem can be used to incorporate
different load conditions, failures, and maintenance schedules for instance (see for
example [41]).

Locational marginal prices (LMPs), defined by the Lagrange multipliers (dual
variables) on (3.2), can be shown to maximize total welfare of producers and con-
sumers in perfectly competitive markets under assumptions of convexity and com-
pleteness. Under some additional assumptions this is true in dynamic stochastic
settings as well [23]. This feature is becoming important for renewable systems with
storage.

Locational marginal prices are less attractive when optimizing systems with large
thermal plant having minimum operating levels and fixed costs for switching on and
off. In the setting above, we might add a constraint and binary variables x

q""x < ¢f < " x,x € {0,1}

7

to force a particular generator to operate at 0, or in the range [¢/"", ¢/®], g™ > 0.
Here the lack of convexity invalidates the classical welfare theorems. In practice
most system operators in LMP markets solve mixed integer programming problems
to determine what plant should run, and when. Marginal prices from such a dispatch
are not always sufficient to pay for generators’ costs, and so “make-whole” payments
are required to provide incentives for participation in the market. See [5] for a recent
detailed discussion of the merits of such centrally dispatched systems in contrast to
self-dispatched systems.

Some electricity market system operators (such as New Zealand and Australia)
solve (convex) dispatch problems formulated as linear programs. To enable this they
require supply curves to represent minimum operating levels and start-up and shut-
down costs in the offered “marginal” cost curve. In other words, in a single-period
setting, a plant that is currently off might mark up the marginal cost of its offer by an
amount that would cover the cost of switching on if it were dispatched. A plant that
was currently operating would offer at a discount to ensure that it was not switched
off. Such a dispatch model treats these as truthful marginal cost declarations and
yields LMPs that reflect these. The welfare theorems of convex markets obviate the
need for make-whole payments.

There are two disadvantages with this approach. Unlike conventional marginal
costs that can be calculated from fuel costs and heat rates, amortized start-up and
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GREEN ENERGY SYSTEMS 13

shut-down costs are difficult to estimate. For example, should a start-up cost be
amortized over a 30 minute period or over the expected period that the unit is on?
To avoid a shortfall, suppliers will be conservative, and so the cost of dispatch will
generally be higher than one obtained by solving a MIP. This loss in efficiency will be
more pronounced when there are many large thermal units that can operate in dif-
ferent combinations. A MIP that accurately models starts and shuts can cut through
these to yield a less expensive dispatch.

A second disadvantage comes from the increased difficulty in monitoring the po-
tential strategic behavior of market participants who are now freed from any imposed
regulatory constraint to offer at short-run marginal cost. In markets that use MIPs
to dispatch generation plant, the start-up and shut-down costs and no-load costs are
also much harder to estimate than fuel costs, so there is admittedly a similar incentive
for generators to mark these up above their true values without being detected.

As electricity markets include growing amounts of intermittent generation and
storage devices, the make-whole payments required to incentivize participation have
been increasing (see [35]). While LMPS are currently computed using deterministic
models, the dynamic stochastic features of markets with green energy seem to require
a different approach to price formation to properly reward flexibility [20]. It is possible
that the replacement of coal and gas plant by wind and solar generators will decrease
economies of scale and lead to dispatch problems that can be well approximated by
convex stochastic optimization problems, reducing the need for make-whole payments.

Stochastic market clearing models have a new set of challenges, even if convexity
can be assumed. Even in markets approximated as a two-stage stochastic program
with a finite probability distribution the optimal solution cannot be both budget
balanced (where the independent system operator does not lose money) and recover
each agent’s costs (each market participant does not lose money) in every scenario (see
[14]). It is possible under some strong assumptions on completeness of the risk market
to ensure budget balance and cost recovery in risk-adjusted expectation which at
least makes participation individually rational. A deeper philosophical problem with
stochastic dispatch is an assumption that agents agree on the underling probability
distribution used in the stochastic program. Rather than imposing a distribution,
markets are supposed to be a mechanism for eliciting these probability distributions
from a range of participants who each “put their money where their mouth is”.

Stochastic market clearing models must also be dynamic, treating many trading
periods at once, so they are stochastic optimal control problems rather than two-stage
problems. Since the realized values of random variables in the future will inevitably
differ from those in any model, the optimal control problems need to be updated in a
rolling horizon fashion, as these values are discovered. Currently, a number of markets
adopt this rolling horizon approach in a deterministic setting where single forecasts
are updated. Such look-ahead dispatch models can yield efficient dispatch solutions,
but can cause consistency problems in the resulting LMPs [34].

3.5. Load forecasting. Estimating load on the electricty system is crucial for
many, if not all, models. Load forecasting is often categorized into: 1) Short-term (one
hour to one week), 2) Medium-term (week to a year), and 3) Long-term (longer than a
year) settings that are appropriate for different use cases. New policy issues, disruptive
technologies to facilitate the transition, engineering and economic enhancements that
change usage patterns, and efforts to electrify both heating and transport lead to
substantive changes in electric demand. In fact, the fast growth in the use of LLM’s
across society and the world had led to huge increases in the use of computational
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14 M. C. FERRIS, AND A. PHILPOTT

resources and consequently in energy to power them. Some see this as a principal
limitation to the AI revolution. Such perturbations must be included in the load
forecasts for them to be at all useful. A recent survey is provided in [53].

A popular approach is to use a neural network approach [6] for the load forecasts.
The paper [74] solves an optimal load dispatch model of a grid-connected community
microgrid which contains residential power load, photovoltaic arrays, electric vehicles
(EV), and energy storage systems (ESS), under three contrasting scheduling scenarios.
In the load dispatch model, the residential power load and the photovoltaic power
output were obtained from the forecasting results of a neural net model. The total
cost of the proposed model consists of transaction costs between the microgrid and the
main power grid, depreciation cost of EV and ESS, and treatment cost of pollutant
emissions. Simple limit constraints specify interaction with the electrical grid.

3.6. Emissions trading. Many countries have implemented cap-and-trade mar-
kets for greenhouse gas emissions [3, 71]. These differ in their implementation but
generally involve a decreasing cap on annual emissions permits that must be surren-
dered each year by organizations to account for their emissions. The permits are
auctioned by governments and traded in a secondary market. Given a price for a
permit each emitter in the economy faces an optimization problem that equilibrates
the price of permits against the marginal cost of reducing emissions.

In practice, emissions markets are subject to political intervention. Some sectors
of the economy (e.g. farmers whose animals emit biogenic methane) are made exempt
(at least temporarily) from surrendering permits. The reason is that the carbon charge
imposes a cost that they cannot avoid in the short term by technological means. Extra
costs might make them uncompetitive in international markets. This is unsustainable
in the long run, as biogenic emissions must be reduced. Indeed many countries are
beginning to add emission tariffs to imported goods, which effectively imposes the
costs on farmers that were not imposed by emissions charges in their own country
[52].

A second political intervention comes from the effect of emission charges on en-
ergy prices, notably gasoline and electricity. These price increases affect poor house-
holds disproportionately (as they spend a higher proportion of income on energy than
wealthy households). Moreover poor households have limited access to cheap capital,
so replacing legacy technologies such as gasoline cars and gas water heating is ex-
pensive. This results in strong advocacy for energy subsidies or for more substantial
income redistribution through taxation policy to enable poor households to reduce
emissions.

Ideally a global cap-and-trade market would result in a world carbon price that
would reduce emissions in the most efficient way. A number of authors (see e.g. [43]
have pointed to potential deficiencies in such a market. Lack of effective verification
of permits can cause “carbon leakage” to less compliant countries and weakening in
permit prices as experienced for about ten years after 2008. There are also potential
market failures. Consider a least-cost optimal solution for the world to reach a desired
emission target that requires a poor country to face a large fixed cost to be able to
reduce emissions (say by building a large hydroelectric dam). A global emissions
price might be insufficient to incentivize this. A subsidy from the rest of the world
will enable this solution to be realized.

There is an analogy here with make-whole payments in optimal dispatch, where
the marginal energy price is insufficient to produce the socially optimal outcome.
Make-whole payments incentivize participation of all generating plant in the optimal
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dispatch solution.

3.7. The role of storage, peaking and load shedding. The most popular
forms of green electricity are generated by the wind and the sun. These sources are
both intermittent and uncertain. Intermittency (the fact that the sun does not shine
at night) and the (random) variability (due to cloud cover or other effects) can be
treated separately [73]. In some areas solar insolation is reasonably predictable but is
not available at night time. If the solar power exceeds demand during the day and is
not exported then some form of energy storage might be desirable to use the power
generated during the day in the evening and night time. This storage is intended to
be cycled on a daily basis, and will save its operators money by reducing night-time
power consumption that must otherwise be bought off the grid [67]. Batteries are
typically used to perform this function if the discounted electricity cost saved over
the battery life covers its capital cost. Batteries also can be used to transfer energy
between time periods for other variable sources of energy such as wind power [42].

Like any inventory, battery storage also plays a role when supply and demand are
unpredictable [17]. Energy storage then provides a hedge against future uncertainty.
The optimal sizing, location and operation of batteries under these circumstances
requires a stochastic optimization model that represents the short-term uncertainty
in supply, e.g., when predicted wind does not eventuate [77].

An alternative approach installs fast-start peaking generators to deal with uncer-
tain and intermittent renewable energy supply. These typically are open-cycle natural
gas turbines, but they could be configured to run on biofuel or green methane pro-
duced from carbon capture and hydrogen. The optimal sizing, location and operation
of such peaking plant also requires a stochastic optimization model. Instead of in-
stalling peaking capacity, the system might arrange for (industrial) consumers to shed
load in response to price. This demand response essentially performs the same func-
tion as a peaking plant. Estimating demand response for different customer types
requires some estimate of their marginal value of electricity, which is much harder
to determine compared with a price of natural gas. Another alternative is to use a
battery to provide the peaking functionality [18].

Storage can also operate over a longer time scale (see [63]). For example in some
regions where energy supply is seasonal, hydroelectric reservoirs are used to transfer
water from melting snow or wet season rainfall to dry seasons of the year. The water
in these systems stores energy. In contrast to short-term battery storage that can be
used to overcome a limitation on electricity capacity, reservoir storage is a response
to seasonal energy limitations.

Specific mathematical models of batteries for use in storage models can be found
in [59], for example.

3.8. Transmission. Electricity transmission architecture is a key component of
the transition to green energy. Historically, transmission of electricity has been driven
by economies of scale in generation. Electricity generation from large-scale coal and
nuclear plant needs transmission to make it available to consumers that can be located
many miles from generator locations. The cost of transmission lines has historically
been low compared with the costs of proliferating small plants for local electricity
generation. Even as these costs fall, transmission remains important since renewable
sources of energy (e.g. offshore wind) are not always located where demand is.

In most electricity markets, transmission is separated from energy production, and
is owned and operated by an independent regulated monopoly. Designing transmission
systems to achieve desirable social outcomes is nevertheless a challenging optimization
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16 M. C. FERRIS, AND A. PHILPOTT

problem. Examples of models that study this are [48] in a deterministic setting, [72]
in a setting with random wind and transmission switching, and [60] and [76] in a
principal-agent setting.

For switching problems, the economic dispatch problem can be updated to replace
constraints (3.3) and (3.4) by

Bij(0; — 0;) — M;j(1 — 2i5) < wyij < Bij(0 — 0;) + My (1 — xi5)
= YijTij < Yij < YijTij,

for (i,7) € L, where M;; represent so-called big-M constants that facilitate the switch-
ing on and off of a given line ij, and binary variables = represent switching decisions.

Reconfiguration and initial design share many similar features, particularly if a
given set of choices is specified a-priori. In this case, investment costs could be added
to the objective:

> elad) + Z bijwi.

i€eG ij

3.9. Conversion of energy. In general, it is possible to convert any form of
energy into another target form, having different properties from the source form.
Only 40% of the energy used in the United States is currently supplied by electricity.
The majority of the remaining 60% of energy is supplied by directly combusting fossil
fuels like gasoline to power cars or by burning natural gas for heat and cooking.

3.9.1. Conversion for Storage. As mentioned above, electricity can be con-
verted to a chemical form in a battery for example that allows for energy to be stored
over short time periods, or water can be pumped uphill creating potential energy for
later conversion using gravity and turbines. Such conversions are lossy, in that some
energy is expended and lost in the conversion process. Electricity is expensive to store
since it incurs these losses both in conversion and possibly over time due to leakage.

Storage also requires capital and this adds to the expense. Batteries have high
conversion efficiencies but have a high capital cost per MWh stored. A principal use
of batteries is therefore to transfer electrical energy over short time periods, allowing
repeated use of the battery over time to arbitrage prices so as to recover capital costs
from high utilization. The timing of charge/discharge can be determined effectively
using stochastic control models.

For longer time frames of storage, batteries are not as effective since they are
used less frequently and so cannot recover their capital costs. In this setting, there
may be conversions of the electrical energy that are less efficient from an energy
conversion perspective, but allow the energy to be moved across time to where it
is much more valuable. These conversions may even be relatively inexpensive from
a capital perspective, as they might only use excess capacity of existing/deployed
technologies (such as ammonia generation or hydrogen to methane conversion). More
generally, conversions could be done locally, converting generated energy into a form
suitable for local storage and later use at that location or for more effective transport
(e.g. methane is more easily transported in pipes with lower losses than hydrogen).
Optimization again can be used to determine what conversions to do, where to do
them, and at what scale.

3.9.2. Portfolio of Storage. System optimization models can shed light on
these conversions and which ones are effective in a given portfolio. We illustrate this
with a toy example. Consider a set K of different storage types (say ammonia, green
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methane, hydrogen, pumped storage, and battery), with variables for the amount of
energy stored sg;(w) in storage type k in a scenario w at time ¢t = 1...,T, and the
related charging ¢/, (w) and discharging g, (w) profiles. Integer variables x;, determine
how many units of k are installed. The overall cost of operation is given by:

> e+ (1/T)E (Z V(0 (@) + G () + pe(w) (gl (W) — %W)))
k w,t

where ¢ is the per period capital charge for storage k, yx represents the cost due to
cycling the battery and p;(w) is the price paid for energy at ¢. The system dynamics
are modeled by:

Sk(41) (W) = ske(w) + exgfy (W) — g (w)

where e is the charging efficiency, and composition of the portfolio of storage is
determined using:

sit(w) < Sy,

with Sy being the size of a unit of the storage k. Residual demand r(w) is related to
storage via

riw) =Y 4 (W) — g (@)
k

This can be augmented with spill on the left hand side (that is penalized in the
definition of cost perhaps) and the addition of a peaking plant supply on the right if
desired. The key to such models is in the data (K, T, ¢k, e, Sk, r¢(w)): we specify T as
the number of hours in a year, and generate the demand d;(w) uniformly at random
(using an upper bound on the random sample in each time step generated by a seasonal
underlying curve supplemented by daily deviations to capture the day/night cycles).
Supply is specified so it provides an overbuild factor 1 + 7 more than the demand
from generators, and residual demand is the difference of demand and supply. Other
data are taken from estimates in the literature.

Figure 3 shows optimal installed capacity and the number of charge/discharge
events for three different levels (n = 0.2,0.4,0.6) of renewable overbuild, in a free
disposal regime without peaking plants. Installed battery capacity has high capital
costs so the storage capacity chosen is small. It is used primarily to deal with demand
peaks, so the frequency of its usage is large as shown in the lower panel of Figure 3.
At low levels of excess renewable energy supply, the portfolio of storage investment is
biased strongly towards the more efficient storage technologies (batteries and pump
storage) to use the excess energy most effectively to avoid shortages. As the levels of
renewable oversupply increase, ammonia and green methane become more attractive:
the energy wasted by these less efficient storage technologies is less costly if there
is a large surplus of energy and is outweighed by the lower capital cost of these
technologies. Fewer batteries are built as oversupply increases, since this reduces
peaking requirements that are increasingly handled by (less efficient) pump storage.

This simple model shows that a single choice of storage technology will not be
optimal: we require a mix of storage technologies depending on the level of renewable
overbuild. Of course the total costs of storage decrease as the amount of overbuilt
renewable capacity increases, so there will be an optimal setting where the marginal
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Fia. 3. Storage portfolio and charging frequency under different generation design scenarios.

725 cost of this equals the marginal decrease in storage cost. This is shown schematically
726 in Figure 4. With an appropriate representation of the transmission network, the
727  model can also be extended to determine the location of energy storage as well as its
728 technology and size.

729 3.9.3. Conversion for Transport. Electricity is what we call a secondary en-
730 ergy source. It is created by converting primary sources of energy like fossil fuels, wind
731 and solar energy, into electricity. It is a particularly useful form of energy because it
732 can be quickly and efficiently transported over long distances and is readily usable in
733 a multitude of settings (lighting, heat, mechanics, transport, etc). Electricity is also
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F1a. 4. Optimizing renewable overbuild and storage

referred to as an energy carrier, which means it can be reconverted to other forms of
energy such as mechanical energy or heat.

Transmission of electricity over long distances incurs losses through dissipated
heat. (These losses are reduced by increasing the voltage and decreasing the electrical
current.) The capital cost of the transmission infrastructure and the cost of energy
losses can be compared with alternative forms of energy transport.

For example, consider hydrogen. One could imagine converting electricity to
hydrogen gas at a large generation plant, transporting the hydrogen to a city, and
then storing it and converting it back to electricity through combustion or fuel cells
when it is needed. This enables the energy to be available at peak times. Note,
however, that each conversion incurs a loss of energy and hydrogen is very expensive
to transport (being light but requiring heavy pressure vessels, or susceptible to leaks
from conventional gas pipes).

An alternative model transports electricity to the city and makes hydrogen lo-
cally. Electrolysers to make hydrogen can be made cheaply at very small scale, and
require only electricity and fresh water as fuel. This means that electricity rather
than hydrogen is transported, and hydrogen can be made and stored locally where
the demand occurs. Such a model requires a transmission grid to be dimensioned to
meet extra demand, but avoids the much higher costs of hydrogen transport. The
model in subsection 3.9.2 can be easily extendded to address these issues.

Demand for energy can change due to changes in behavoir of users. There are
concerns about the electrification of urban transport expressed for example in [12].
While a very high gasoline tax would yield some interesting developments, it is unclear
how elastic the demand is, and whether such policies would lead to more working
from home, more use of public transport and electric vehicles. For another example,
air transportation is very energy intensive and currently not very green. Transition
strategies are focused on sustainable aviation fuel (SAF), liquid hydrogen and electric
power, both pure and hybrid [30]. The aggregation of transport by sea or pipeline
instead of airlines or trucking could reduce emissions substantially, perhaps at the
cost of longer transport times. Passenger travel via sea instead of by air might also
involve much longer times, but at a smaller energy cost per person. Models could
shed light on the underlying properties that are being utilized here - is the key simply
economies of scale? Tradeoffs based on behavior change are not limited to the energy
sector but will impact other sectors such as tourism and industrial productivity.
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3.10. Energy/resource tradeoffs. Land is finite, and using it for energy gen-
eration such as in solar farms, or more generally for climate renewal as in reforestation,
precludes agricultural production or other uses. Similarly, biofuel production (corn
for ethanol instead of feed) and dam building for new hydro generation uses land for
energy while reducing its availability for other uses. In this context equilibrium mod-
els are relevant, allowing a price to determine efficient allocation of scarce resources
to a variety uses. Certainly, the tradeoff does not need to be limited to energy and
land, but could involve other finite resources, or other environmental concerns.

As mentioned in the introduction, many forms of green energy may involve some
use of finite resources. Batteries involve the extraction of rare-earth materials, and
deforestation occurs in the extraction of copper. How can our models capture these
effects? Do we need to consider more complex life cycle models accounting for all
inputs, for example. Or is a pricing mechanism an effective way to encourage capital
investment in alternatives?

More generally, energy generation and consumption is part of a broader economic
landscape where energy and the products and services it enables are transferred be-
tween different sectors of the economy. The effect of a change in the energy architec-
ture will be felt in all sectors and requires a model of the whole economy to evaluate.
Integrated Assessment Models (IAMs) of which there are many (see [55, 10]) aim to
model these intersectoral energy flows in a system optimization framework. Alterna-
tive approaches use computable general equilbrium models of the economy (see, e.g.,
[75, 10]).

4. Risk. In the classical finance literature, risk is identified with variance. In
some settings this makes it beneficial to reduce variance through aggregation. As in
the model of subsection 3.2, a collection of wind turbines with uncorrelated variable
wind generation can be aggregated to give a more predictable supply, which presents
advantages to economic dispatch models. Similarly the capital asset pricing model
translates variance in returns into a discount rate that can be used to assess the risk
of uncertain cash flows, so reducing variance with no change in expected reward is
deemed to be beneficial.

However, as noted by [50] the energy transition presents decision makers with
risks (downside variance) and opportunities (upside variance). Ideally, optimization
models should be able to take advantage of opportunities while minimizing risks.
In contrast with models that minimize variance, risk-averse stochastic programming
models using coherent risk measures [64] provide a principled approach for doing this.

Risk in settings with many agents requires careful handling. Each agent type
is exposed to a unique set of risks that arise from their technology choices, climate,
fuel source, exchange rates, and regulatory intervention. Some of these risks can be
reduced through hedge contracts signed with counterparties who see reward opportu-
nities in the risks faced by others. We give some examples of these transactions.

4.1. Short-term risk instruments. A popular form of hedge contract is called
a contract for differences (CFD). Arranged at some strike price f, this is a financial
agreement to pay a counterparty p — f where p is the observed price of electricity.
So if party A intends to sell @ MWh to counterparty B at some future time, then @
CFDs arranged at f will hedge the unknown future price and conduct the transaction
at known price f.

Weather derivatives are also a mechanism for reducing risk. Consider distributed
solar, and demand from air-conditioning. In the event of a very sunny day, the air
conditioners need more energy to run and the price would rise, but solar farms are
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producing more. A weather derivative in which the solar farm guarantees the air
conditioner a certain amount of energy whenever the temperature (or insolation) is
above a certain level will reduce the risk of losses of both parties.

For a second example of weather-based derivatives consider a geothermal genera-
tor. This has high capital costs and very low operating costs, so it make sense to run
as a base-load plant. In the middle of the day when solar power is at a maximum,
it might make sense for the electricity system to control geothermal output to avoid
spilling energy. A solar farm might arrange a derivative contract with a geothermal
plant that pays out when the sun shines, but imposes a cap on geothermal output at
this time[36].

Can hedge contracts remove all risk? In an uncertain environment an Arrow-
Debreu security is a derivative contract that pays $1 to the holder if a particular
future state of the world occurs. If these exist for every possible future state then in
principle an agent can insure against any conceivable loss (at some ex-ante cost) by
purchasing an appropriate Arrow-Debreu security off a counterparty.

This highly idealized situation would never occur in practice but it is a useful
model to study risk and contracts. A relatively recently developed theory (see [61, 56,
23]) shows that if markets for energy are perfectly competitive and convex, and all
agents are endowed with coherent risk measures, and the market for Arrow-Debreu
securities is complete, then agents will trade their risk using these securities until
no more risk can be hedged. The remaining risk is then treated by each agent as
if they were using the risk measure of the least risk-averse agent. For example if
some agents such as speculators were actually risk-neutral then a complete market
for Arrow-Debreu securities will result in every agent optimizing the expectation of
their costs and benefits (i.e., acting as neutral to risk). This theory enables one to
establish useful welfare theorems that demonstrate that the markets deliver socially
optimal outcomes.

In practice, risk markets are incomplete, so the welfare theorems do not hold.
Computational studies show that removing some risk using CFDs and other instru-
ments can improve welfare outcomes in incomplete markets. It is also possible to find
counterexamples where adding instruments makes welfare worse [4]. Furthermore the
computation of equilibria in incomplete settings is difficult as these might fail to exist
or not be unique [29]. This is an active area of research in scientific computation (see,
e.g. [44, 37]).

4.2. Long-term risk. The transition from a largely fossil-fueled energy system
to a renewable system is expected to take decades. Although we can develop sophis-
ticated planning models to guide the decisions made, these decisions will in many
cases be made by commercial organizations in pursuit of profits, but also facing many
uncertainties. Investment in energy production and infrastructure development is fi-
nanced largely by borrowing, and the cost of this finance depends on the risk of the
investment, and so organizations making investment decisions need to understand the
risk of the investment as well as its (uncertain) reward.

Capacity investments must make non-negative risk-adjusted returns to be justi-
fied. In the risk-averse stochastic programming setting this amounts to a non-negative
net present value with stochastic discount rates. In a complete market for risk, the
trade of Arrow-Debreu securities leads companies to share the same stochastic dis-
count rates. This allows the optimal capacity decisions for companies to be determined
by a social planner who maximizes social NPV with the same discounting.

In practice, as in the short-term setting, risk markets are not complete, so a social
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planning solution might not match a risked equilibrium. The latter, however, can often
be computed as the solution to a complementarity problem. As an example, consider
the following equilibrium problem formulated in [14] where each generator chooses
generating capacities and generation levels and retailers of energy choose amounts to
buy'. Each agent a solves the problem:

PO 2802
st. Z%w) = Z Ky - 2y
ke
33 (erelw) = m(w)) - 2 (w)
teT keK
+ 3 (m(w) = 1) - (A (w) — g} (W)
teT
(4.1) +Y Vi) Yw € Q,
teT
(4.2) iy (w) < myy(w) - 24 VkeK,weteT,

(4.3) Z i (w) < ng(w) - 23 Vk e K,weQ
teT
(4.4) g (w) < df (w) VweQteT.

The objective for each agent, a, is to minimize their own risk-adjusted disbenefit
p*(Z®). Here p® is a coherent risk measure and Z%(w) is the net cost from investing
and operating their fleet of generation in scenario w as defined by equation (4.1). The
constraints contain terms for both generators and retailers and so some will not be
present for each type of agent. The generator a produces z¢,(w) from plant type k and
the retailer buys power at wholesale price 7;(w) and sells it at fixed price r. In the first
line of equation (4.1), we have the physical capacity investment cost, D, - Ki - 2},
where the sum is over investment technologies. In the second line of equation (4.1),
we have the component of the disbenefit from generation, (¢ — 7)x, with ¢ giving the
marginal cost of generation, 7r the spot market price, and x the output of generation.

In the third term, we define the disbenefit from meeting demand. The per unit
cost of meeting demand is given by @ — r with the agent having to purchase the
electricity directly from the spot market at @ and given r by the consumer. The
demand met by the retail component of the agent is given by d — q. The exogenous
demand of each consumer is given by d, and q is how much the retail company decides
to curtail. The overall profit is given by (7w —r)(d — q).

In the final term, we define the penalty the retail agent must pay for unmet
demand, g. The penalty is the value of lost load, v, which is much higher than
typically observed spot market prices. This penalty is added to the lost revenue from
not meeting all of the consumer demand for electricity generation.

In equations (4.2) through (4.4), we define the physical constraints on generation
and curtailment. Equation (4.2) limits the power output @ of each plant, depending
on the capacity investment z and some multiplicative adjustment, m, that depends on
the scenario and load block. Equation (4.3) limits the energy output of a generation

'n [14] there is also an ISO agent that dispatches power through a transmission network. We
assume a single node model for simplicity.
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plant. Finally, equation (4.4) limits consumption to be at most the level of demand.
To form a complementarity problem, the KKT conditions from problem P(a) for
each agent a are added to the following market clearing conditions:

0< Z x%t(w)—&—Zq?(w)—Zd?(w)J_ﬁt(w)ZO, YweQteT,

a€A ke a€A acA
OSZQ?(W)LI"*‘V—M(W)ZO, YweQteT.
acA

These complementarity conditions ensure that supply meets demand at a competitive
price. We have free disposal of power within our model, allowing supply to exceed
demand at each node. However, when this occurs, the spot market price for electricity
at this node will be 0. And when some positive amount of load is shed then the price
hits its maximum value r + v. As mentioned above, the incompleteness of the market
for trading risk complicates the existence, uniqueness and computation of equilibrium
in these models, but in many practical instances equilibria exist and can be computed
(see [47] and [4]).

As alluded to by [50], long-term investment decisions should maximize opportu-
nity while controlling risk. Stochastic programming models that represent such real
options are multistage, since opportunities are revealed over time as random variables
are realized. Multistage risk-averse optimization has many variations depending on
the form of conditional risk measure used. We mention two.

Given an adapted set of actions at each node of a scenario tree, an end-of-horizon
risk measure sums the payoffs at each node along a path from root to leaf to give a
scenario payoff. The risk of the set of actions is then evaluated using a coherent risk
measure applied to this distribution of scenario payoffs. This is the predominant risk
measure used in software for solving multistage models of capacity expansion under
uncertainty (see, e.g., [19]).

Given an adapted set of actions at each node of a scenario tree, a nested risk
measure computes the risk-adjusted payoff at the parent of each leaf node, using the
payoffs at this node and its children. This risked “value-to-go” function is then used
to evaluate the risk-adjusted payoff of the set of decisions at the grandparent of each
leaf in a recursive pattern. This recursive definition ensures that the dynamic risk
measure is time-consistent.

Dynamic risked equilibrium (see [23]) of many agents can be viewed as an open-
loop problem or a closed-loop problem. In the former setting, agents choose every
action in every state of the world on day 1, assuming other agents have fixed theirs.
The response of an agent is then computed in response to this knowledge. Such an
equilibrium is not subgame perfect. In a closed-loop equilibrium, an equilibrium is
computed for every state of the world at the final time. The payoffs in this equi-
librium then inform actions at the penultimate time, and the solution is computed
recursively. As shown in [23], these two solution concepts yield the same result in
perfectly competitive convex markets with complete risk markets. In imperfect or
incomplete markets they are not the same. Developing computational methods for
these problems is an active area of research (see [65]).

Why are these models important? Much effort has been devoted to developing in-
tegrated assessment models (TAMs) for understanding the transition to green energy.
These models are (often deterministic) social planning models with high levels of phys-
ical fidelity, but treating the future as predictable scenarios. Including uncertainty
and risk aversion in these models makes them more realistic, but the results need
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to be reconciled with commercial investment decisions of competing agents. Welfare
theorems give some justification for using risk-averse IAMs as gold-standard bench-
marks for the dynamic risked equilibria in incomplete markets that we believe are
closer representations to what will actually occur.

4.3. Architecture for resilience. Unexpected outages (that can arise from
operator mistakes, major storms or environmental disturbances, or even deliberate
sabotage by adversarial actors) are a general concern in electrical energy systems.
However, the more distributed nature of green energy systems may allow some en-
hancements, whereby cascading failures can be avoided by isolating subnetworks of
the overall grid. Since more batteries or other storage devices are installed (to provide
transfer of energy over time), those same resources could be made available (along with
existing distributed generation) to facilitate balancing while isolated. This is a novel
use of additional functionality installed in the system to improve overall resilience.

In any disaggregated system, the need arises for additional information to facili-
tiate better overall control and stability. There is a large existing literature in the
energy domain related to information, privacy and mechanism design (for markets,
auctions, etc). The underlying question regarding the much finer scales of disaggrega-
tion that might come about in a green energy system brings up questions as to whether
these existing mechanisms are sufficient in these new operating environments, or what
changes and enhancements are needed.

4.4. Capacity markets. The transition to green energy will be costly. Accord-
ing to the International Energy Agency over 60% of the world’s electricity in 2021
was generated from fossil fuels. Given that total electricity generation will increase
from electrification of transport and industrial processes, the scale of the investment
in green electricity capacity is immense.

This raises several important questions. What incentive structures are needed
to ensure that the right mix of capacity is built? Is the dynamic risked equilibrium
that emerges from commercial decisions enough to give the capacity increases that we
need? Finally, will this equilibrium be achieved in time to avert a climate catastrophe?

The first question is an area of active research. As mentioned in subsection 3.4
locational marginal prices (LMPs) are not always sufficient to incentivize optimal par-
ticipant behavior. In perfectly competitive, convex energy-only markets LMPs provide
economic rents that support optimal levels of investment at the margin determined
by a screening-curve analysis [68] as depicted in Figure 5.

The screening curve shows the annual total cost per MW capacity plotted against
the number of annual operating hours. The total cost is a combination of fixed and
variable cost based on the number of production hours in a year. A minimum cost
for each capacity factor can be found by combining the screening curve with the load
duration curve (LDC), here approximated by 10 load blocks with piecewise constant
demand. The projection produces the least-cost capacity combination that can serve
the load profile. For example, to supply the part of the LDC that has higher capacity
factor (i.e., running most of the year), base load is the least cost option. As the
number of operating hours decreases, the plants that are less expensive to build but
more costly to run begin to become more economical. For a small number of hours
at the tip of the duration curve, high variable cost peakers are the most economical.

This picture is complicated by intermittent generation sources that are not dis-
patchable, and by risk aversion that affects the equilibrium as discussed in the previous
section. And even in the simple deterministic case, energy prices might need to be
very high on occasions to sustain the peaking investment needed to make the system
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FiG. 5. The screening curve: how capacity is traditionally planned in electricity systems.

avoid shedding load. For example if load shedding is acceptable in at most four or five
hours per year, then prices need to become very high to pay for the annual capital cost
of a peaking plant that runs only during these periods. The uncertainty of receiving
these cash flows every year makes such an investment too risky.

Contracts between energy suppliers can resolve some of the risks faced by gener-
ators in deciding capacity investments. For example, a hydroelectric generator could
arrange a two-way option contract with a coal plant to keep the coal plant available
for periods of low reservoir inflows. The hydroelectric generator buys a call option
off the coal plant, and the coal plant buys a put option (at a lower strike price) from
the hydro generator. These contracts (that can be arranged to have the same price)
enable the coal plant to receive revenue even when wholesale prices are below its
marginal cost of generation in return for some loss of revenue in peak periods.

Capacity markets that arrange additional payments for committed generation
capacity ahead of time are a popular mechanism intended to overcome these problems.
Opinions differ on the effectiveness of these mechanisms in comparison with energy-
only markets, and studying their design and operation is an active area of research.

In dealing with the transition to green energy, capacity markets serve to answer
the second question as they can procure the desired capacity of different energy tech-
nologies at auction. So governments can decide to increase this as needed to meet
demand growth. It is not clear whether the same outcome might be achieved at lower
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cost with an energy-only solution.

The final question of timing is important. A green-energy risked equilibrium must
be viewed over a long time scale and achieve a green energy system in time to avert
a climate catastrophe. Dynamic equilibrium models might give some confidence that
commercial investment will deliver in time, but betting the planet’s future on this
might be too risky for policy makers. As evidence of climate change becomes more
obvious, generational shifts in voter preferences might lead to more direct government
intervention in planning and implementing the transition. In this case, relying on com-
petitive electricity markets to achieve the transition might be viewed by governments
as too much of a risk.

5. Conclusions. In this paper we have outlined some of the questions arising
in the transition to green energy, and presented some mathematical approaches to
address them. The models we discuss are formulations of optimization problems
and related complementarity problems, in settings with a variety of physical scales,
and dealing with different time scales. The costs of the physical and institutional
architecture required to bring about the transition will be substantial and will involve
risk. Mathematical models will be essential in understanding the complex tradeoffs
that have to be made in planning and incentivizing the transition to enable it to occur
at a low cost and in time to avoid global temperatures rising to unacceptable levels.
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