This was part of
Quantum Sensing
Entanglement enabled probes of open quantum systems
Kater Murch, University of Washington, St. Louis
Thursday, October 17, 2024
Abstract: Josephson junction-based quantum circuits have enabled broad exploration into open quantum systems in the microwave frequency domain. The combination of coherent quantum bits, robust single qubit control, entangling gates, and quantum noise-limited parametric amplifiers has yielded an unprecedented view into the physics of quantum measurement and dissipation. I will discuss our recent experimental work that focuses on harnessing entangled states to perform measurements beyond the capabilities of unentangled sensors. Key topics will include discussion of an entanglement-enabled probe of non-Markovian dynamics and time-travel-inspired metrology protocols.